Optimization of fermentation conditions and evaluation of stability of Bacillus kochii
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] As common biocontrol bacteria, Bacillus exhibit great potential in the prevention and control of plant diseases. [Objective] In this study, we optimized the fermentation conditions and evaluated the stability of Bacillus kochii DDWB with nematicidal activity, aiming to provide theoretical support for the development and application of the strain. [Methods] With the nematicidal activity of supernatant and the OD600 of fermentation broth as indexes, we optimized the culture medium and fermentation parameters of DDWB strain via single factor tests and orthogonal design. Furthermore, we analyzed nematicidal activity about pH, temperature, UV irradiation, heredity, and storage stability of the fermentation broth. [Results] The optimized culture medium for DDWB strain contained 2% sucrose, 1% yeast extract, and 2% potassium chloride. The optimized fermentation conditions were initial pH 8.0, the filling volume of 150 mL/250 mL conical flask), the fermentation time of 48 h, the inoculum volume of 8%, the rotation speed of 160 r/min, and the fermentation temperature of 31 ℃. The fermentation broth was sensitive to acid and alkali, and its nematicidal activity degraded after 4 h of UV irradiation. However, the fermentation broth was not sensitive to temperature, and the genes related to nematicidal activity could be stably inherited. [Conclusion] We optimized the fermentation conditions and evaluated the stability of active substances in the fermentation broth of DDWB strain, aiming to make the strain rapidly propagate and maintain its long-term and stable nematicidal activity against root-node nematodes. The findings laid a foundation for evaluating the field efficacy and biocontrol mechanism of DDWB strain.

    Reference
    [1] 冯辉, 赵敏, 周冬梅, 张金凤, 张爱华, 杨荣明, 黄文坤, 魏利辉. 南方根结线虫中国分离群体种内变异分析[J]. 植物保护学报, 2021, 48(2): 423-433 Feng H, Zhao M, Zhou DM, Zhang JF, Zhang AH, Yang RM, Huang WK, Wei LH. Intraspecific variability of the southern root-knot nematode Meloidogyne incognita in China[J]. Journal of Plant Protection, 2021, 48(2): 423-433(in Chinese)
    [2] 孙宜川, 黄卜. 根结线虫病发生特点及综合防治技术[J]. 西北园艺: 综合, 2020(6): 46-47 Sun YC, Huang B. Occurrence characteristics and integrated control techniques of root-knot nematode disease[J]. Northwest Horticulture, 2020(6): 46-47(in Chinese)
    [3] 晋治波, 解玲, 朱正杰, 刘芳. 丛枝菌根真菌对不同番茄品种抗根结线虫病的影响[J]. 微生物学通报, 2021, 48(3): 755-764 Jin ZB, Xie L, Zhu ZJ, Liu F. Effect of inoculation with arbuscular mycorrhizal fungi on root-knot nematode (Meloidogyne incognita) in tomato cultivars[J]. Microbiology China, 2021, 48(3): 755-764(in Chinese)
    [4] Jones JG, Kleczewski NM, Desaeger J, Meyer SLF, Johnson GC. Evaluation of nematicides for southern root-knot nematode management in Lima bean[J]. Crop Protection, 2017, 96: 151-157
    [5] 李磊, 赵俊杰, 刘莹莹, 甄静, 李亮亮, 陈国参, 慕琦, 王继雯. 高效根结线虫生防真菌筛选及其性能研究[J]. 生物学杂志, 2021, 38(6): 70-74, 81 Li L, Zhao JJ, Liu YY, Zhen J, Li LL, Chen GC, Mu Q, Wang JW. Screening and performance of high-efficiency root-knot nematode biocontrol fungi[J]. Journal of Biology, 2021, 38(6): 70-74, 81(in Chinese)
    [6] 刘晓宇, 陈立杰, 邢志富, 王海明, 段玉玺. 4种生物源杀线剂对番茄根结线虫的田间防效[J]. 植物保护, 2020, 46(6): 228-232, 253 Liu XY, Chen LJ, Xing ZF, Wang HM, Duan YX. Field efficacy of four bio-nematicides against tomato root-knot nematodes[J]. Plant Protection, 2020, 46(6): 228-232, 253(in Chinese)
    [7] 王丹, 刘存辉, 石朝鹏, 刘永高, 李玲玲, 王增君, 孙作文. 轮作万寿菊对芹菜根结线虫病的防控效果[J]. 中国植保导刊, 2020, 40(12): 46-48 Wang D, Liu CH, Shi ZP, Liu YG, Li LL, Wang ZJ, Sun ZW. Effect of rotation with marigold on the prevention and control of celery root-knot nematode[J]. China Plant Protection, 2020, 40(12): 46-48(in Chinese)
    [8] 宋展树, 李金章, 白欣可, 卢晶, 石文静, 刘建平, 惠曌华, 高鹏聪. 庆阳香瓜根结线虫病的绿色综合防控技术[J]. 中国瓜菜, 2020, 33(12): 128-129 Song ZS, Li JZ, Bai XK, Lu J, Shi WJ, Liu JP, Hui ZH, Gao PC. Green comprehensive control techniques for root-knot nematode disease of cantaloupe in Qingyang[J]. China Cucurbits and Vegetables, 2020, 33(12): 128-129(in Chinese)
    [9] 侯富恩, 郝科星, 苏东涛, 张涛, 王铭, 张曼, 侯东颖. 抗TYLCV番茄新品种龙番1号的选育[J]. 中国蔬菜, 2020(10): 89-92 Hou FE, Hao KX, Su DT, Zhang T, Wang M, Zhang M, Hou DY. A new tomato F1 hybrid with resistant to TYLCV: ‘longfan No.1’[J]. China Vegetables, 2020(10): 89-92(in Chinese)
    [10] 张建. 蔬菜主要病虫害的危害症状及绿色高效防控措施[J]. 现代农业科技, 2021(8): 82-83 Zhang J. Harmful symptoms of main vegetable diseases and insect pests and green and efficient prevention and control measures[J]. Modern Agricultural Science and Technology, 2021(8): 82-83(in Chinese)
    [11] 张琦, 申帅, 胡先奇. 蔬菜根结线虫生防放线菌LY4的筛选及其鉴定[J]. 江西农业大学学报, 2020, 42(6): 1107-1115 Zhang Q, Shen S, Hu XQ. Screening and identification of biocontrol Atinomycetes spp. LY4 against Meloidogyne incognita[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(6): 1107-1115(in Chinese)
    [12] 赵婷婷, 闫凤超. 细菌源蛋白质农药研究现状与展望[J]. 现代化农业, 2019(12): 6-11 Zhao TT, Yan FC. Research status and prospect of bacteria-derived protein pesticides[J]. Modernizing Agriculture, 2019(12): 6-11(in Chinese)
    [13] Huang XW, Tian BY, Niu QH, Yang JK, Zhang LM, Zhang KQ. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes[J]. Research in Microbiology, 2005, 156(5/6): 719-727
    [14] Yang JK, Liang LM, Li J, Zhang KQ. Nematicidal enzymes from microorganisms and their applications[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7081-7095
    [15] Geng C, Nie XT, Tang ZC, Zhang YY, Lin J, Sun M, Peng DH. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins[J]. Scientific Reports, 2016, 6: 25012
    [16] Hu HJ, Gao Y, Li X, Chen SL, Yan SZ, Tian XJ. Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2[J]. Phytopathology®, 2020, 110(2): 336-344
    [17] Hofemeister J, Conrad B, Adler B, Hofemeister B, Feesche J, Kucheryava N, Steinborn G, Franke P, Grammel N, Zwintscher A. Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3[J]. Molecular Genetics and Genomics: MGG, 2004, 272(4): 363-378
    [18] Wang KD, Tian YP, Zhou ND, Liu DH, Zhang DW. Studies on fermentation optimization, stability and application of prolyl aminopeptidase from Bacillus subtilis[J]. Process Biochemistry, 2018, 74: 10-20
    [19] Liu GY, Lin X, Xu SY, Liu G, Liu F, Mu W. Screening, identification and application of soil bacteria with nematicidal activity against root-knot nematode (Meloidogyne incognita) on tomato[J]. Pest Management Science, 2020, 76(6): 2217-2224
    [20] 刘广. 阿维菌素纳米囊的制备及对黄瓜根结线虫病防治作用[D]. 泰安: 山东农业大学硕士学位论文, 2020 Liu G. Preparation of abamectin nanocapsules and its against root-knot nematode (Meloidogyne incognita) disease[D]. Tai’an: Master’s Thesis of Shandong Agricultural University, 2020(in Chinese)
    [21] 中华人民共和国农业部. 农药室内生物测定试验准则杀线虫剂第1部分: 抑制植物病原线虫试验浸虫法: NY/T 1833.1—2009[S]. 北京: 中国农业出版社, 2010 Ministry of Agriculture of the People’s Republic of China. Guideline for laboratory bioassay of pesticides. Part 1: immersion test for nematocides inhibiting nematode: NY/T 1833.1—2009[S]. Beijing: Chinese Agriculture Press, 2010(in Chinese)
    [22] 黄慧婧, 罗坤. 芽孢杆菌与杀菌剂复配防治植物病害的研究进展[J]. 微生物学通报, 2021, 48(3): 938-947 Huang HJ, Luo K. Research progress in the control of plant diseases by the combination of Bacillus and fungicides[J]. Microbiology China, 2021, 48(3): 938-947(in Chinese)
    [23] 叶云峰, 黎起秦, 袁高庆, 付岗, 缪剑华, 林纬. 枯草芽孢杆菌B47菌株高产抗菌物质的培养基及发酵条件优化[J]. 微生物学通报, 2011, 38(9): 1339-1346 Ye YF, Li QQ, Yuan GQ, Fu G, Miao JH, Lin W. Optimization of culture medium and fermentation conditions for high production of antimicrobial substance by Bacillus subtilis strain B47[J]. Microbiology China, 2011, 38(9): 1339-1346(in Chinese)
    [24] Ohno A, Ano T, Shoda M. Effect of temperature change and aeration on the production of the antifungal peptide antibiotic iturin by Bacillus subtilis NB22 in liquid cultivation[J]. Journal of Fermentation and Bioengineering, 1993, 75(6): 463-465
    [25] 刘翠娟, 段琦梅, 安德荣. 抗真菌拮抗放线菌的筛选及摇床发酵条件的优化[J]. 微生物学杂志, 2004, 24(4): 12-14 Liu CJ, Duan QM, An DR. Screening of steptomeses which inhabit pathogenic fungi and the optimization of fermentation conditions in the shaker[J]. Journal of Microbiology, 2004, 24(4): 12-14(in Chinese)
    [26] Jourdan E, Henry G, Duby F, Dommes J, Barthélemy JP, Thonart P, Ongena M. Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(4): 456-468
    [27] 方传记, 陆兆新, 孙力军, 别小妹, 吕凤霞, 黄现青. 淀粉液化芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化[J]. 中国农业科学, 2008, 41(2): 533-539 Fang CJ, Lu ZX, Sun LJ, Bie XM, Lü FX, Huang XQ. Optimization of fermentation technology for lipopeptides producing bacteri a Bacillus amyloliquefaciens ES-2-4[J]. Scientia Agricultura Sinica, 2008, 41(2): 533-539(in Chinese)
    [28] 梁念, 朱道辰, 孙建中. 一株枯草芽孢杆菌Y1的生长条件优化[J]. 饲料研究, 2020, 43(8): 63-68 Liang N, Zhu DC, Sun JZ. Optimization of a Bacillus subtilis strain Y1 growth conditions[J]. Feed Research, 2020, 43(8): 63-68(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XU Yufei, ZHANG Xiaomin, ZHU Jiamei, WANG Qingbin, ZHANG Xiaoying, WANG Hongfeng, LIU Feng, MU Wei. Optimization of fermentation conditions and evaluation of stability of Bacillus kochii[J]. Microbiology China, 2022, 49(7): 2612-2624

Copy
Share
Article Metrics
  • Abstract:365
  • PDF: 1054
  • HTML: 802
  • Cited by: 0
History
  • Received:November 20,2021
  • Adopted:December 31,2021
  • Online: July 06,2022
  • Published: July 20,2022
Article QR Code