Construction and functional verification of a Zn2+ sensitive mutant of Escherichia coli
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Owing to the key roles of Zn2+ in cell detoxification and physiological processes, Zn2+ transporters have attracted increasing attention. In Escherichia coli, zntA and zitB are two key genes responsible for Zn2+ efflux. [Objective] This study aims to construct a Zn2+ sensitive mutant of E. coli and verify its function. [Methods] Using E. coli DH5α as the original strain, we knocked out zntA via a λ Red recombination system by using the homologous recombinant fragment carrying a kanamycin resistance gene. On the basis of the single-gene knockout mutant, zitB was further knocked out via the homologous recombinant fragment carrying a gentamicin resistance gene. In this way, a mutant with the knockout of both zntA and zitB was obtained and designated as KZAB04. The functional complementation experiment was conducted to test the sensitivity of the mutants and the original strain (negative control) under different Zn2+ concentrations. [Results] KZAB04 exhibited higher Zn2+ sensitivity than the original strain. [Conclusion] A Zn2+ sensitive mutant of E. coli was successfully constructed. The construction of this mutant is the prerequisite for the functional study of zntA and zitB and lays a foundation for the functional identification of other Zn2+ transporter genes.

    Reference
    [1] 胡堃, 史兆兴, 赛道建, 黄留玉. Red重组系统及在微生物基因敲除中的应用[J]. 遗传, 2003, 25(5): 628-632 Hu K, Shi ZX, Sai DJ, Huang LY. The red recombination system and its application to gene knock-out in microorganism[J]. Hereditas, 2003, 25(5): 628-632(in Chinese)
    [2] Wang SH, Dai JJ, Meng QM, Han XG, Han Y, Zhao YC, Yang DH, Ding C, Yu SQ. DotU expression is highly induced during in vivo infection and responsible for virulence and Hcp1 secretion in avian pathogenic Escherichia coli[J]. Frontiers in Microbiology, 2014, 5: 588
    [3] Wang SH, Bao YL, Meng QM, Xia YJ, Zhao YC, Wang Y, Tang F, ZhuGe XK, Yu SQ, Han XG, et al. IbeR facilitates stress-resistance, invasion and pathogenicity of avian pathogenic Escherichia coli[J]. PLoS One, 2015, 10(3): e0119698
    [4] 李继东, 才学鹏. 山羊痘病毒TK基因功能缺失对其增殖的影响[J]. 中国畜牧兽医, 2017, 44(2): 319-326 Li JD, Cai XP. Effect on proliferation of goat pox virus of TK gene deficiency[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(2): 319-326(in Chinese)
    [5] Russell CB, Thaler DS, Dahlquist FW. Chromosomal transformation of Escherichia coli recD strains with linearized plasmids[J]. Journal of Bacteriology, 1989, 171(5): 2609-2613
    [6] Hamilton CM, Aldea M, Washburn BK, Babitzke P, Kushner SR. New method for generating deletions and gene replacements in Escherichia coli[J]. Journal of Bacteriology, 1989, 171(9): 4617-4622
    [7] Link AJ, Phillips D, Church GM. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization[J]. Journal of Bacteriology, 1997, 179(20): 6228-6237
    [8] 陈欣, 刘龙, 李江华, 刘杰, 堵国成, 陈坚. Red同源重组敲除nagEmanX对大肠杆菌发酵生产氨基葡萄糖的影响[J]. 生物工程学报, 2012, 28(3): 305-319 Chen X, Liu L, Li JH, Liu J, Du GC, Chen J. Influence of nagE and manX knockout with red homologous recombination on the microbial production of glucosamine by Escherichia coli[J]. Chinese Journal of Biotechnology, 2012, 28(3): 305-319(in Chinese)
    [9] 吴程华, 严玉霖, 高洪, 谭锐, 董骎. Red同源重组技术在大肠埃希菌基因敲除中的应用[J]. 上海畜牧兽医通讯, 2015(1): 9-11 Wu CH, Yan YL, Gao H, Tan R, Dong Q. Application of Red homologous recombination technology in gene knockout of Escherichia coli[J]. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2015(1): 9-11(in Chinese)
    [10] 李鑫, 李亚芯, 戴建君. Red两步同源重组法在大肠杆菌基因敲除中的应用[J]. 中国畜牧兽医, 2017, 44(7): 1934-1940 Li X, Li YX, Dai JJ. Usage of two-step red homologous recombination method to knockout the gene of Escherichia coli[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(7): 1934-1940(in Chinese)
    [11] 吕沈聪, 赵颖颖, 钟卫鸿. Red同源重组在大肠杆菌基因敲除中的应用[J]. 化学与生物工程, 2013, 30(6): 1-6 Lü Shencong, ZHAO Yingying, ZHONG Weihong. Application of red homologous recombination in gene knockout of E. coli[J]. Chemistry & Bioengineering, 2013, 30(6): 1-6(in Chinese)
    [12] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. PNAS, 2000, 97(12): 6640-6645
    [13] Doublet B, Douard G, Targant H, Meunier D, Madec JY, Cloeckaert A. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains[J]. Journal of Microbiological Methods, 2008, 75(2): 359-361
    [14] Barresi V, Valenti G, Spampinato G, Musso N, Castorina S, Rizzarelli E, Condorelli DF. Transcriptome analysis reveals an altered expression profile of zinc transporters in colorectal cancer[J]. Journal of Cellular Biochemistry, 2018, 119(12): 9707-9719
    [15] Blindauer CA. Advances in the molecular understanding of biological zinc transport[J]. Chemical Communications: Cambridge, England, 2015, 51(22): 4544-4563
    [16] Lova Navarro M, Vera Casaño A, Benito López C, Fernández Ballesteros MD, Godoy Díaz DJ, Crespo Erchiga A, Romero Brufau S. Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2)[J]. Pediatric Dermatology, 2014, 31(2): 251-252
    [17] Itsumura N, Kibihara Y, Fukue K, Miyata A, Fukushima K, Tamagawa-Mineoka R, Katoh N, Nishito Y, Ishida R, Narita H, et al. Novel mutations in SLC30A2 involved in the pathogenesis of transient neonatal zinc deficiency[J]. Pediatric Research, 2016, 80(4): 586-594
    [18] Chandler P, Kochupurakkal BS, Alam S, Richardson AL, Soybel DI, Kelleher SL. Subtype-specific accumulation of intracellular zinc pools is associated with the malignant phenotype in breast cancer[J]. Molecular Cancer, 2016, 15: 2
    [19] Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers[J]. Frontiers in Bioscience: Landmark Edition, 2017, 22: 623-643
    [20] Hildebrand MS, Phillips AM, Mullen SA, Adlard PA, Hardies K, Damiano JA, Wimmer V, Bellows ST, McMahon JM, Burgess R, et al. Loss of synaptic Zn2+ transporter function increases risk of febrile seizures[J]. Scientific Reports, 2015, 5: 17816
    [21] Kimura T, Kambe T. The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective[J]. International Journal of Molecular Sciences, 2016, 17(3): 336
    [22] Leyva-Illades D, Chen P, Zogzas CE, Hutchens S, Mercado JM, Swaim CD, Morrisett RA, Bowman AB, Aschner M, Mukhopadhyay S. SLC30A10 is a cell surface-localized manganese efflux transporter, and Parkinsonism-causing mutations block its intracellular trafficking and efflux activity[J]. The Journal of Neuroscience, 2014, 34(42): 14079-14095
    [23] Lee SM, Grass G, Haney CJ, Fan B, Rosen BP, Anton A, Nies DH, Rensing C. Functional analysis of the Escherichia coli zinc transporter ZitB[J]. FEMS Microbiology Letters, 2002, 215(2): 273-278
    [24] 丁海峰, 李小申, 黄慧, 苑丽. 基因敲除技术研究进展[J]. 黑龙江畜牧兽医, 2018(5): 50-54 Ding HF, Li XS, Huang H, Yuan L. The research progress of gene knockout technology[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(5): 50-54(in Chinese)
    [25] 姜巨全, 张正来, 徐桐, 孟琳. 大肠杆菌中dctA基因敲除及其苹果酸摄取功能鉴定[J]. 东北农业大学学报, 2018, 49(5): 45-52 Jiang JQ, Zhang ZL, Xu T, Meng L. Knock-out of dctA gene from Escherichia coli K12 and characterization of its function for malic acid transportation[J]. Journal of Northeast Agricultural University, 2018, 49(5): 45-52(in Chinese)
    [26] 姜巨全, 孙开福, 杨立娜, 陈金, 张正来. 松嫩盐单胞菌中Group 2 mrp操纵子敲除及突变株耐盐碱分析[J]. 东北农业大学学报, 2017, 48(12): 11-20 Jiang JQ, Sun KF, Yang LN, Chen J, Zhang ZL. Construction of Group 2-mrp-knockout mutant of Halomonas songnenensis and analysis on its halo-alkaline-tolerant capacity[J]. Journal of Northeast Agricultural University, 2017, 48(12): 11-20(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Yuting, XU Tong, HUA Beijie, JIANG Juquan. Construction and functional verification of a Zn2+ sensitive mutant of Escherichia coli[J]. Microbiology China, 2022, 49(7): 2538-2549

Copy
Share
Article Metrics
  • Abstract:353
  • PDF: 1047
  • HTML: 1003
  • Cited by: 0
History
  • Received:November 12,2021
  • Adopted:January 10,2022
  • Online: July 06,2022
  • Published: July 20,2022
Article QR Code