Research trend of permafrost microorganisms based on bibliometrics
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [47]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] The thawing of permafrost caused by global warming accelerates the degradation of soil organic carbon by microorganisms, and the generated greenhouse gases will exacerbate the greenhouse effect to some extent, forming a positive feedback effect on global climate change. [Objective] To compare the research hotspots and trends of permafrost microorganisms at home and abroad, and thus provide a basis for the research and development of this field in the future. [Methods] The relevant literature was searched from Web of Science Core Collection and CNKI. BIBExcel was employed to generate the co-word matrix of high-frequency keywords, and the network of high-frequency words was visualized with UCINET and NetDraw. The clustering analysis of high-frequency words was performed in SPSS. [Results] A total of 839 papers related to permafrost microorganisms were retrieved, including 713 in English and 126 in Chinese. The number of papers published in English and its growth rate were significantly higher than those in Chinese. According to the high-frequency keywords and co-occurrence networks, foreign research focused on the relationship between climate change, greenhouse gases, and microbial community changes, while the Chinese on microbial diversity in permafrost areas. The clustering analysis demonstrated that the papers published in English mainly involved the degradation of organic carbon by microorganisms and its impact on permafrost areas and even the world. In addition, the Martian life with permafrost microorganisms as the research object has been explored. The studies published in Chinese mainly concerned microbial diversity, methane emissions, and microbial degradation of pollutants in permafrost. [Conclusion] The research situation of permafrost microorganisms has both similarities and differences at home and abroad. Although other countries have better research systems and knowledge structures than China, the greenhouse gas emissions of permafrost microorganisms caused by warming have become a common research hotspot at home and abroad.

    Reference
    [1] 赵全宁,严应存,刘彩红,祁栋林,铁吉新. 1980-2017年青海省玉树地区季节冻土变化对气候变暖的响应[J].冰川冻土, 2018, 40(5):899-906 Zhao QN, Yan YC, Liu CH, Qi DL, Tie JX. The response of seasonally frozen soil depth to climate warming in Yushu prefecture, Qinghai province from 1980 to 2017[J]. Journal of Glaciology and Geocryology, 2018, 40(5):899-906(in Chinese)
    [2] Anisimov O, Reneva S. Permafrost and changing climate:the Russian perspective[J]. AMBIO:a Journal of the Human Environment, 2006, 35(4):169-175
    [3] Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps[J]. Biogeosciences, 2014, 11(23):6573-6593
    [4] Chen YL, Liu FT, Kang LY, Zhang DY, Kou D, Mao C, Qin SQ, Zhang QW, Yang YH. Large-scale evidence for microbial response and associated carbon release after permafrost thaw[J]. Global Change Biology, 2021, 27(14):3218-3229
    [5] Peñuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusià J, Garbulsky M, et al. Evidence of current impact of climate change on life:a walk from genes to the biosphere[J]. Global Change Biology, 2013, 19(8):2303-2338
    [6] Jorgenson MT, Osterkamp TE. Response of boreal ecosystems to varying modes of permafrost degradation[J]. Canadian Journal of Forest Research, 2005, 35(9):2100-2111
    [7] Jorgenson MT, Shur YL, Pullman ER. Abrupt increase in permafrost degradation in Arctic Alaska[J]. Geophysical Research Letters, 2006, 33(2):L02503
    [8] Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN. Permafrost degradation and its environmental effects on the Tibetan Plateau:a review of recent research[J]. Earth-Science Reviews, 2010, 103(1/2):31-44
    [9] 马俊杰,李韧,刘宏超,吴通华,肖瑶,杜宜臻,杨淑华,史健宗,乔永平.青藏高原多年冻土区活动层水热特性研究进展[J].冰川冻土, 2020, 42(1):195-204 Ma JJ, Li R, Liu HC, Wu TH, Xiao Y, Du YZ, Yang SH, Shi JZ, Qiao YP. A review on the development of study on hydrothermal characteristics of active layer in permafrost areas in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2020, 42(1):195-204(in Chinese)
    [10] Liu FT, Kou D, Chen YL, Xue K, Ernakovich JG, Chen LY, Yang GB, Yang YH. Altered microbial structure and function after thermokarst formation[J]. Global Change Biology, 2021, 27(4):823-835
    [11] Müller O, Bang-Andreasen T, White RA 3rd, Elberling B, Taş N, Kneafsey T, Jansson JK, Øvreås L. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates[J]. Environmental Microbiology, 2018, 20(12):4328-4342
    [12] Deng J, Gu YF, Zhang J, Xue K, Qin YJ, Yuan MT, Yin HQ, He ZL, Wu LY, Schuur EAG, et al. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska[J]. Molecular Ecology, 2015, 24(1):222-234
    [13] Chu HY, Fierer N, Lauber CL, Caporaso JG, Knight R, Grogan P. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010, 12(11):2998-3006
    [14] Schuur EAG, Mack MC. Ecological response to permafrost thaw and consequences for local and global ecosystem services[J]. Annual Review of Ecology, Evolution, and Systematics, 2018, 49:279-301
    [15] Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee HN, et al. Vulnerability of permafrost carbon to climate change:implications for the global carbon cycle[J]. BioScience, 2008, 58(8):701-714
    [16] 叶深溪,许为民.文献计量学在科研评价中的应用进展[J].图书馆论坛, 2003, 23(4):12-14 Ye SX, Xu WM. On the application advances of bibliometrics for the evaluation of scientific research[J]. Library Tribune, 2003, 23(4):12-14(in Chinese)
    [17] 刘彩霞,方必基. 2011-2020年中国结核病研究文献计量学分析[J].现代预防医学, 2021, 48(14):2520-2523, 2551 Liu CX, Fang BJ. Bibliometrics analysis on research of tuberculosis in China from 2011 to 2020[J]. Modern Preventive Medicine, 2021, 48(14):2520-2523, 2551(in Chinese)
    [18] 高懋芳,邱建军,刘三超,刘宏斌,王立刚,逄焕成.基于文献计量的农业面源污染研究发展态势分析[J].中国农业科学, 2014, 47(6):1140-1150 Gao MF, Qiu JJ, Liu SC, Liu HB, Wang LG, Pang HC. Status and trends of agricultural diffuse pollution research based on bibliometrics[J]. Scientia Agricultura Sinica, 2014, 47(6):1140-1150(in Chinese)
    [19] 盛春蕾,吕宪国,尹晓敏,闫长平.基于web of science的1899-2010年湿地研究文献计量分析[J].湿地科学, 2012, 10(1):92-101 Sheng CL, Lu XG, Yin XM, Yan CP. Bibliometrical analysis of wetland research based on web of science from 1899 to 2010[J]. Wetland Science, 2012, 10(1):92-101(in Chinese)
    [20] 冯筠,郑军卫.基于文献计量学的国际遥感学科发展态势分析[J].遥感技术与应用, 2005, 20(5):526-530 Feng Y, Zheng JW. An analysis of status and trends of the international remote sensing science on bibliometrics[J]. Remote Sensing Technology and Application, 2005, 20(5):526-530(in Chinese)
    [21] 仝婧婧,郭荣欣,邹德勋,郑旭升,刘研萍.土壤污染微生物修复领域文献计量分析[J].土壤通报, 2021, 52(3):736-746 Tong JJ, Guo RX, Zou DX, Zheng XS, Liu YP. Bibliometric analysis on the research of microbial remediation of soil pollution[J]. Chinese Journal of Soil Science, 2021, 52(3):736-746(in Chinese)
    [22] 李雅,刘梅,曾全超,顾丹丹,刘少敏,安韶山.基于文献计量的土壤有机碳与土壤微生物多样性研究前沿态势分析[J].土壤通报, 2017, 48(3):745-756 Li Y, Liu M, Zeng QC, Gu DD, Liu SM, An SS. Frontier situation analysis of the research on soil carbon sequestration and soil microbial diversity based on bibliometric[J]. Chinese Journal of Soil Science, 2017, 48(3):745-756(in Chinese)
    [23] 王敏,张志强.知识发现研究文献定量分析[J].图书情报工作, 2008(4):29-31 Wang M, Zhang ZQ. A quantitative analysis of knowledge discovery papers[J]. Library and Information Service, 2008(4):29-31(in Chinese)
    [24] 沈永平. IPCC WGI第四次评估报告关于全球气候变化的科学要点[J].冰川冻土, 2007, 29(1):156 Shen YP. Key results from summary for policymakers of IPCC WGI AR4[J]. Journal of Glaciology and Geocryology, 2007, 29(1):156(in Chinese)
    [25] 沈永平,王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J].冰川冻土, 2013, 35(5):1068-1076 Shen YP, Wang GY. Key findings and assessment results of IPCC WGI fifth assessment report[J]. Journal of Glaciology and Geocryology, 2013, 35(5):1068-1076(in Chinese)
    [26] 张玲玲,巩杰,张影.基于文献计量分析的生态系统服务研究现状及热点[J].生态学报, 2016, 36(18):5967-5977 Zhang LL, Gong J, Zhang Y. A review of ecosystem services:a bibliometric analysis based on web of science[J]. Acta Ecologica Sinica, 2016, 36(18):5967-5977(in Chinese)
    [27] 王耕,常畅,于小茜,徐惠民.基于文献计量分析的珊瑚礁研究现状与热点[J].生态学报, 2019, 39(3):1114-1123 Wang G, Chang C, Yu XX, Xu HM. Status quo and hotspots of coral reef research based on bibliometric analysis[J]. Acta Ecologica Sinica, 2019, 39(3):1114-1123(in Chinese)
    [28] 李继光,孙慧,朱帅,罗碧霞,周煜,朱鹏,许尤厚,刘思杰.基于文献计量的海洋牧场研究发展态势[J].科学技术与工程, 2021, 21(6):2232-2241 Li JG, Sun H, Zhu S, Luo BX, Zhou Y, Zhu P, Xu YH, Liu SJ. Development trend of marine ranching research based on bibliometrics[J]. Science Technology and Engineering, 2021, 21(6):2232-2241(in Chinese)
    [29] 李秋云,韩国圣,张爱平,徐虹. 1979-2012年中国旅游地理学文献计量与内容分析[J].旅游学刊, 2014, 29(9):110-119 Li QY, Han GS, Zhang AP, Xu H. Bibliometric and content analysis of China's tourism geography research from 1979 to 2012[J]. Tourism Tribune, 2014, 29(9):110-119(in Chinese)
    [30] 廖胜姣,肖仙桃.基于文献计量的共词分析研究进展[J].情报科学, 2008, 26(6):855-859 Liao SJ, Xiao XT. Research advances on the bibiometrics-based co-word analysis[J]. Information Science, 2008, 26(6):855-859(in Chinese)
    [31] 韦想云,朱国平.基于文献计量分析的南极海洋保护区研究动态[J].极地研究, 2021, 33(1):88-98 Wei XY, Zhu GP. Bibliometric analysis of Antarctic marine protected area research[J]. Chinese Journal of Polar Research, 2021, 33(1):88-98(in Chinese)
    [32] Tripathi BM, Kim M, Kim Y, et mountains[J]. Forest Engineering, 2015, 31(3):25-30(in Chinese)h profiles of Alaskan soil cores.[J]. Scientific reports, 2018,8(1):504
    [33] Cheptsov VS, Vorobyova EA, Manucharova NA, Gorlenko MV, Pavlov AK, Vdovina MA, Lomasov VN, Bulat SA. 100 kGy gamma-affected microbial communities within the ancient Arctic permafrost under simulated Martian conditions[J]. Extremophiles:Life Under Extreme Conditions, 2017, 21(6):1057-1067
    [34] Gilichinsky M, Demidov N, Rivkina E. Morphometry of volcanic cones on Mars in perspective of Astrobiological research[J]. International Journal of Astrobiology, 2015, 14(4):537-545
    [35] Wilhelm RC, Radtke KJ, Mykytczuk NCS, Greer CW, Whyte LG. Life at the wedge:the activity and diversity of Arctic ice wedge microbial communities[J]. Astrobiology, 2012, 12(4):347-360
    [36] 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明.环北极多年冻土区碳循环研究进展与展望[J].冰川冻土, 2019, 41(4):845-857 Ni J, Wu TH, Zhao L, Li R, Xie CW, Wu XD, Zhu XF, Du YZ, Yang C, Hao JM. Carbon cycle in circum-Arctic permafrost regions:progress and prospects[J]. Journal of Glaciology and Geocryology, 2019, 41(4):845-857(in Chinese)
    [37] Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH. Reproduction and metabolism at-10 degrees C of bacteria isolated from Siberian permafrost[J]. Environmental Microbiology, 2003, 5(4):321-326
    [38] Feng JJ, Wang C, Lei JS, Yang YF, Yan QY, Zhou XS, Tao XY, Ning DL, Yuan MM, Qin YJ, et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community[J]. Microbiome, 2020, 8(1):3
    [39] Tan QY, Si JP, He YJ, Yang Y, Shen KP, Xia TT, Kang LL, Fang ZY, Wu BL, Guo Y, et al. Improvement of Karst soil nutrients by arbuscular mycorrhizal fungi through promoting nutrient release from the litter[J]. International Journal of Phytoremediation, 2021, 23(12):1244-1254
    [40] Brzostek ER, Dragoni D, Brown ZA, Phillips RP. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. The New Phytologist, 2015, 206(4):1274-1282
    [41] 张春楠,张瑞芳,王红,等.丛枝菌根真菌影响作物非生物胁迫耐受性的研究进展[J].微生物学通报, 2020,47(11):3880-3891 Zhang CN, Zhang RF, Wang H. Effects of arbuscular mycorrhizal fungi on abiotic stress tolerance in crops:a review[J]. Microbiology China, 2020, 47(11):3880-3891(in Chinese)
    [42] 冯雨晴,梁四海,吴青柏,陈建伟,田鑫,吴盼.冻土退化过程中植被覆盖度的变化研究[J].北京师范大学学报(自然科学版), 2016, 52(3):311-316 Feng YQ, Liang SH, Wu QB, Chen JW, Tian X, Wu P. Vegetation responses to permafrost degradation in the Qinghai-Tibetan Plateau[J]. Journal of Beijing Normal University:Natural Science, 2016, 52(3):311-316(in Chinese)
    [43] 郭金停,韩风林,胡远满,聂志文,任百慧,布仁仓.大兴安岭北坡多年冻土区植物生态特征及其对冻土退化的响应[J].生态学报, 2017, 37(19):6552-6561 Guo JT, Han FL, Hu YM, Nie ZW, Ren BH, Bu RC. Ecological characteristics of vegetation and their responses to permafrost degradation in the north slope of Great Khingan Mountain valley of northeast China[J]. Acta Ecologica Sinica, 2017, 37(19):6552-6561(in Chinese)
    [44] 孙菊,李秀珍,胡远满,王宪伟,吕久俊,李宗梅,陈宏伟.大兴安岭沟谷冻土湿地植物群落分类、物种多样性和物种分布梯度[J].应用生态学报, 2009, 20(9):2049-2056 Sun J, Li XZ, Hu YM, Wang XW, Lyu JJ, Li ZM, Chen HW. Classification, species diversity, and species distribution gradient of permafrost wetland plant communities in Great Xing'an Mountains valleys of Northeast China[J]. Chinese Journal of Applied Ecology, 2009, 20(9):2049-2056(in Chinese)
    [45] Schütte UME, Henning JA, Ye YZ, Bowling A, Ford J, Genet H, Waldrop MP, Turetsky MR, White JR, Bever JD. Effect of permafrost thaw on plant and soil fungal community in a boreal forest:does fungal community change mediate plant productivity response?[J]. Journal of Ecology, 2019, 107(4):1737-1752
    [46] Grayston SJ, Wang S, Campbell CD, Edwards AC. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology and Biochemistry, 1998, 30(3):369-378
    [47] 逄好胜,张会慧,李鑫,丁伟鹏,胡举伟,林晗婧,敖红,孙广玉.大兴安岭林区森林退化对土壤微生物群落功能的影响[J].森林工程, 2015, 31(3):25-30 Pang HS, Zhang HH, Li X, Ding WP, Hu JW, Lin HJ, Ao H, Sun GY. Effects of forest degradation on soil microbial communities in Daxing'an
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIANG Yunbing, WU Song, YANG Libin, ZHOU Tian, DU Jun, LIU Yongzhi. Research trend of permafrost microorganisms based on bibliometrics[J]. Microbiology China, 2022, 49(6): 2388-2402

Copy
Share
Article Metrics
  • Abstract:368
  • PDF: 893
  • HTML: 1011
  • Cited by: 0
History
  • Received:October 10,2021
  • Adopted:January 20,2022
  • Online: June 18,2022
Article QR Code