Effect of bio-heat on microbial succession and metabolism in traditional solid-state fermentation:a review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Revealing the influence of bio-heat generated in traditional solid-state fermentation on the microbial metabolism is the key to understanding the fermentation mechanism, regulating the fermentation process, and ensuring the fermentation efficiency. In the solid-state fermentation process, the bio-heat generated from the microbial metabolic activities and the low heat transfer efficiency of the fermentation substrate causes the increase in fermentation temperature, which affects the growth and metabolism of microorganisms. However, the effect of bio-heat on the microorganisms in traditional solid-state fermentation and the adaptation mechanism of microorganisms remain unclear. We expounded the effect of high temperature mediated by continuous bio-heat on the microbial succession and metabolism in the traditional solid-state fermentation process. Furthermore, we proposed that the complex community regulate microbial metabolism at multiple levels (community level and individual level) to adapt to the high-temperature environment. Understanding the impact of bio-heat on the microorganisms in traditional solid-state fermentation and the potential heat-resistance mechanisms will facilitate the targeted regulation of fermentation process and improve the production of high-temperature fermentation to meet the needs of industrialization.

    Reference
    [1] 徐岩.现代白酒酿造微生物学[M].北京:科学出版社, 2019 Xu Y. Modern Liquor Brewing Microbiology[M]. Beijing:Science Press, 2019(in Chinese)
    [2] 任聪,杜海,徐岩.中国传统发酵食品微生物组研究进展[J].微生物学报, 2017, 57(6):885-898 Ren C, Du H, Xu Y. Advances in microbiome study of traditional Chinese fermented foods[J]. Acta Microbiologica Sinica, 2017, 57(6):885-898(in Chinese)
    [3] Wu Q, Zhu Y, Fang C, Wijffels RH, Xu Y. Can we control microbiota in spontaneous food fermentation:Chinese liquor as a case example[J]. Trends in Food Science&Technology, 2021, 110:321-331
    [4] Wang XS, Du H, Zhang Y, Xu Y. Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation[J]. Applied and Environmental Microbiology, 2018, 84(4):e02369-e02317
    [5] Yang L, Fan WL, Xu Y. GC×GC-TOF/MS and UPLC-Q-TOF/MS based untargeted metabolomics coupled with physicochemical properties to reveal the characteristics of different type daqus for making soy sauce aroma and flavor type baijiu[J]. LWT, 2021, 146:111416
    [6] Zhang HX, Wang L, Wang HY, Yang F, Chen LQ, Hao F, Lyu XB, Du H, Xu Y. Effects of initial temperature on microbial community succession rate and volatile flavors during Baijiu fermentation process[J]. Food Research International, 2021, 141:109887
    [7] Chen HZ. Modern Solid State Fermentation[M]. Springer, 2013
    [8] Riah-Anglet W, Trinsoutrot-Gattin I, Martin-Laurent F, Laroche-Ajzenberg E, Norini MP, Latour X, Laval K. Soil microbial community structure and function relationships:a heat stress experiment[J]. Applied Soil Ecology, 2015, 86:121-130
    [9] Wipf HML, Bùi TN, Coleman-Derr D. Distinguishing between the impacts of heat and drought stress on the root microbiome of Sorghum bicolor[J]. Phytobiomes Journal, 2021, 5(2):166-176
    [10] Moeller AH, Ivey K, Cornwall MB, Herr K, Rede J, Taylor EN, Gunderson AR. The lizard gut microbiome changes with temperature and is associated with heat tolerance[J]. Applied and Environmental Microbiology, 2020, 86(17):e01181-e01120
    [11] 谢文,周莲娇,徐娟,郭清莲,蒋风雷,刘义.生物热化学和热动力学研究进展[J].物理化学学报, 2020, 36(6):19-28 Xie W, Zhou LJ, Xu J, Guo QL, Jiang FL, Liu Y. Advances in biothermochemistry and thermokinetics[J]. Acta Physico-Chimica Sinica, 2020, 36(6):19-28(in Chinese)
    [12] Jin GY, Uhl P, Zhu Y, Wijffels RH, Xu Y, Rinzema A. Modeling of industrial-scale anaerobic solid-state fermentation for Chinese liquor production[J]. Chemical Engineering Journal, 2020, 394:124942
    [13] Zhang YZ, Wang L, Chen HZ. Correlations of medium physical properties and process performance in solid-state fermentation[J]. Chemical Engineering Science, 2017, 165:65-73
    [14] Wang SL, Xiong W, Wang YQ, Nie Y, Wu Q, Xu Y, Geisen S. Temperature-induced annual variation in microbial community changes and resulting metabolome shifts in a controlled fermentation system[J]. mSystems, 2020, 5(4):e00555-e00520
    [15] Wang BW, Wu Q, Xu Y, Sun BG. Multiple sugars promote microbial interactions in Chinese baijiu fermentation[J]. LWT, 2021, 138:110631
    [16] Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, Kafkia E, Milanese A, Zeller G, Teusink B, Nielsen J, et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community[J]. Nature Microbiology, 2021, 6(2):196-208
    [17] Zhang HX, Du H, Xu Y. Volatile organic compound-mediated antifungal activity of Pichia spp. and its effect on the metabolic profiles of fermentation communities[J]. Applied and Environmental Microbiology, 2021, 87(9)
    [18] Yang L, Fan WL, Xu Y. Metaproteomics insights into traditional fermented foods and beverages[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(5):2506-2529
    [19] Xiao C, Lu ZM, Zhang XJ, Wang ST, Ao L, Shen CH, Shi JS, Xu ZH. Bio-heat is a key environmental driver shaping the microbial community of mediumtemperature Daqu[J]. Applied and Environmental Microbiology, 2017, 83(23):e01550-e01517
    [20] Wei HW, Wang LH, Hassan M, Xie B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process[J]. Bioresource Technology, 2018, 256:333-341
    [21] 王柏文,吴群,徐岩,孙宝国.中国白酒酒曲微生物组研究进展及趋势[J].微生物学通报, 2021, 48(5):1737-1746 Wang BW, Wu Q, Xu Y, Sun BG. Recent advances and perspectives in study of microbiome in Chinese Jiuqu starter[J]. Microbiology China, 2021, 48(5):1737-1746(in Chinese)
    [22] 方程,杜海,徐岩.大曲丝状真菌的物种多样性及其次级代谢产物的合成潜力[J].食品与发酵工业, 2019, 45(15):1-8 Fang C, Du H, Xu Y. Diversity of Daqu filamentous fungi and their potentials for synthesizing bioactive compounds[J]. Food and Fermentation Industries, 2019, 45(15):1-8(in Chinese)
    [23] Yu Z, Tang J, Liao HP, Liu XM, Zhou PX, Chen Z, Rensing C, Zhou SG. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant[J]. Bioresource Technology, 2018, 265:146-154
    [24] Zhang C, Gao Z, Shi WC, Li LC, Tian RM, Huang J, Lin RS, Wang B, Zhou B. Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting[J]. Bioresource Technology, 2020, 316:123823
    [25] Yi ZL, Jin YL, Xiao Y, Chen LC, Tan L, Du AP, He KZ, Liu DY, Luo HB, Fang Y, et al. Unraveling the contribution of high temperature stage to Jiang-flavor Daqu, a liquor starter for production of Chinese Jiang-flavor baijiu, with special reference to metatranscriptomics[J]. Frontiers in Microbiology, 2019, 10:472
    [26] Huang Y, Yi Z, Jin Y, Zhao Y, He K, Liu D, Zhao D, He H, Luo H, Zhang W, et al. New microbial resource:microbial diversity, function and dynamics in Chinese liquor starter[J]. Scientific Reports, 2017, 7:14577
    [27] Wang YR, Cai WC, Wang WP, Shu N, Zhang ZD, Hou QC, Shan CH, Guo Z. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu[J]. Food Science&Nutrition, 2021, 9(2):1003-1016
    [28] Kong WL, Sun B, Zhang JY, Zhang YT, Gu LK, Bao LJ, Liu SX. Metagenomic analysis revealed the succession of microbiota and metabolic function in corncob composting for preparation of cultivation medium for Pleurotus ostreatus[J]. Bioresource Technology, 2020, 306:123156
    [29] Bao YY, Feng YZ, Qiu CW, Zhang JW, Wang YM, Lin XG. Organic matter-and temperature-driven deterministic assembly processes govern bacterial community composition and functionality during manure composting[J]. Waste Management, 2021, 131:31-40
    [30] Henry AB, Maung CEH, Kim KY. Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM)[J]. Journal of Environmental Management, 2020, 276:111252
    [31] Lu XL, Wu H, Song SL, Bai HY, Tang MJ, Xu FJ, Ma Y, Dai CC, Jia Y. Effects of multi-phase inoculation on the fungal community related with the improvement of medicinal herbal residues composting[J]. Environmental Science and Pollution Research International, 2021, 28(22):27998-28013
    [32] Tran HT, Lin C, Bui XT, Itayama T, Dang BT, Cheruiyot NK, Hoang HG, Vu CT. Bacterial community progression during food waste composting containing high dioctyl terephthalate (DOTP) concentration[J]. Chemosphere, 2021, 265:129064
    [33] Zhang LL, Ma HX, Zhang HQ, Xun LY, Chen GJ, Wang LS. Thermomyces lanuginosus is the dominant fungus in maize straw composts[J]. Bioresource Technology, 2015, 197:266-275
    [34] Zhang LL, Zhang HQ, Wang ZH, Chen GJ, Wang LS. Dynamic changes of the dominant functioning microbial community in the compost of a 90-m3 aerobic solid state fermentor revealed by integrated meta-omics[J]. Bioresource Technology, 2016, 203:1-10
    [35] Yang Y, Wang ST, Lu ZM, Zhang XJ, Chai LJ, Shen CH, Shi JS, Xu ZH. Metagenomics unveils microbial roles involved in metabolic network of flavor development in medium-temperature Daqu starter[J]. Food Research International, 2021, 140:110037
    [36] Li P, Liang HB, Lin WT, Feng F, Luo LX. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation[J]. Applied and Environmental Microbiology, 2015, 81(15):5144-5156
    [37] Liu LX, Wang TZ, Li SS, Hao RR, Li QH. Combined analysis of microbial community and microbial metabolites based on untargeted metabolomics during pig manure composting[J]. Biodegradation, 2021, 32(2):217-228
    [38] Wang P, Wu Q, Jiang XJ, Wang ZQ, Tang JL, Xu Y. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making[J]. International Journal of Food Microbiology, 2017, 250:59-67
    [39] Wang M, Liu X, Nie Y, Wu XL. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities[J]. The ISME Journal, 2021, 15(5):1387-1401
    [40] Lopatkin AJ, Collins JJ. Predictive biology:modelling, understanding and harnessing microbial complexity[J]. Nature Reviews Microbiology, 2020, 18(9):507-520
    [41] García FC, Bestion E, Warfield R, Yvon-Durocher G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning[J]. PNAS, 2018, 115(43):10989-10994
    [42] Malik AA, Martiny JBH, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1):1-9
    [43] Johansen P, Jespersen L. Impact of quorum sensing on the quality of fermented foods[J]. Current Opinion in Food Science, 2017, 13:16-25
    [44] Monnet V, Gardan R. Quorum-sensing regulators in Gram-positive bacteria:'cherchez le peptide'[J]. Molecular Microbiology, 2015, 97(2):181-184
    [45] Kaur A, Capalash N, Sharma P. Quorum sensing in thermophiles:prevalence of autoinducer-2 system[J]. BMC Microbiology, 2018, 18(1):62
    [46] Almatroudi A, Tahir S, Hu H, Chowdhury D, Gosbell IB, Jensen SO, Whiteley GS, Deva AK, Glasbey T, Vickery K. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms[J]. The Journal of Hospital Infection, 2018, 98(2):161-167
    [47] Pawluk AM, Kim D, Jin YH, Jeong KC, Mah JH. Biofilm-associated heat resistance of Bacillus cereus spores in vitro and in a food model, Cheonggukjang jjigae[J]. International Journal of Food Microbiology, 2022, 363:109505
    [48] 曾静,郭建军,邱小忠,王贤卓,袁林.极端嗜热微生物及其高温适应机制的研究进展[J].生物技术通报, 2015, 31(9):30-37 Zeng J, Guo JJ, Qiu XZ, Wang XZ, Yuan L. Advances on hyperthermophiles and mechanism of their thermal adaptation[J]. Biotechnology Bulletin, 2015, 31(9):30-37(in Chinese)
    [49] Frąc M, Jezierska-Tys S, Yaguchi T. Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health[J]. Advances in Agronomy, 2015, 132:161-204
    [50] Li PS, Tan XW, Fu XF, Dang Y, Li SZ. Metabolomic analysis reveals Kluyveromyces marxianus's stress responses during high-temperature ethanol fermentation[J]. Process Biochemistry, 2021, 102:386-392
    [51] Wang WY, Liu RL, Shen Y, Lian B. The potential correlation between bacterial sporulation and the characteristic flavor of Chinese Maotai liquor[J]. Frontiers in Microbiology, 2018, 9:1435
    [52] Witfeld F, Begerow D, Guerreiro MA. Improved strategies to efficiently isolate thermophilic, thermotolerant, and heat-resistant fungi from compost and soil[J]. Mycological Progress, 2021, 20(3):325-339
    [53] Scaramuzza N, Berni E. Heat-resistance of Hamigera avellanea and Thermoascus crustaceus isolated from pasteurized acid products[J]. International Journal of Food Microbiology, 2014, 168/169:63-68
    [54] Wu Q, Xu Y. Transcriptome profiling of heat-resistant strain Bacillus licheniformis CGMCC3962 producing Maotai flavor[J]. Journal of Agricultural and Food Chemistry, 2012, 60(8):2033-2038
    [55] Li PS, Fu XF, Zhang L, Zhang ZY, Li JH, Li SZ. The transcription factors Hsf1 and Msn2 of thermotolerant Kluyveromyces marxianus promote cell growth and ethanol fermentation of Saccharomyces cerevisiae at high temperatures[J]. Biotechnology for Biofuels, 2017, 10:289
    [56] Ge XY, Xu Y, Chen X. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene[J]. Journal of Industrial Microbiology and Biotechnology, 2013, 40(3/4):345-352
    [57] Mercer RG, Zheng JS, Garcia-Hernandez R, Ruan LF, Gänzle MG, McMullen LM. Genetic determinants of heat resistance in Escherichia coli[J]. Frontiers in Microbiology, 2015, 6:932
    [58] Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MHJ. A mobile genetic element profoundly increases heat resistance of bacterial spores[J]. The ISME Journal, 2016, 10(11):2633-2642
    [59] Krawczyk AO, De Jong A, Omony J, Holsappel S, Wells-Bennik MHJ, Kuipers OP, Eijlander RT. Spore heat activation requirements and germination responses correlate with sequences of germinant receptors and with the presence of a specific spoVA2mob operon in foodborne strains of Bacillus subtilis[J]. Applied and Environmental Microbiology, 2017, 83(7):e03122-e03116
    [60] Wang ZY, Li P, Luo LX, Simpson DJ, Gänzle MG. Daqu fermentation selects for heat-resistant Enterobacteriaceae and bacilli[J]. Applied and Environmental Microbiology, 2018, 84(21):e01483-e01418
    [61] Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346(6205):75-78
    [62] Wang Z, Qi Q, Lin YP, Guo YF, Liu YF, Wang QH. Correction to:QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast[J]. Biotechnology for Biofuels, 2019, 12:83
    [63] Wang SL, Wu Q, Nie Y, Wu JF, Xu Y. Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light-aroma-type liquor produced by solid-state fermentation[J]. Applied and Environmental Microbiology, 2019, 85(10):e03090-e03018
    [64] Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. Thermophiles and the applications of their enzymes as new biocatalysts[J]. Bioresource Technology, 2019, 280:478-488
    [65] Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority[J]. Nature Reviews Microbiology, 2021, 19(4):225-240
    [66] 杜如冰,任聪,吴群,徐岩.生态发酵技术原理与应用[J].食品与发酵工业, 2021, 47(1):266-275 Du RB, Ren C, Wu Q, Xu Y. The ecological fermentation technology:principle and its applications[J]. Food and Fermentation Industries, 2021, 47(1):266-275(in Chinese)
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Shenglu, DU Hai, XU Yan. Effect of bio-heat on microbial succession and metabolism in traditional solid-state fermentation:a review[J]. Microbiology China, 2022, 49(6): 2281-2294

Copy
Share
Article Metrics
  • Abstract:590
  • PDF: 2314
  • HTML: 1026
  • Cited by: 0
History
  • Received:October 08,2021
  • Adopted:February 12,2022
  • Online: June 05,2022
Article QR Code