Research progress on the aggregation mechanism of anammox granular sludge
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [82]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Anaerobic ammonium oxidation (anammox) process is the most economical bioprocess for nitrogen removal from wastewater at present, which is conducive to the energy neutral of wastewater treatment plants. Anammox bacteria play a major role in this process. Anammox granular sludge, formed with anammox bacteria, is the most promising sludge form for anammox process, owing to the high settling rate, strong retention capacity, and strong resistance to environmental stresses. Focusing on anammox granules, this paper introduced the characteristics, species, and metabolic pathways of anammox bacteria, and the formation mechanism of anammox granular sludge, and reviewed the extracellular polymeric substance (EPS) and quorum sensing, which are closely related to the aggregation of anammox granular sludge. Moreover, we summarized the future research directions of anammox granules. This review is expected to serve as a reference for the subsequent research on anammox granules and the regulation of anammox process.

    Reference
    [1] Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Van De Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM. Missing lithotroph identified as new planctomycete[J]. Nature, 1999, 400(6743): 446-449
    [2] Wang WG, Wang YY, Wang XD, Zhang Y, Yan Y. Dissolved oxygen microelectrode measurements to develop a more sophisticated intermittent aeration regime control strategy for biofilm-based CANON systems[J]. Chemical Engineering Journal, 2019, 365: 165-174
    [3] Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, Van Loosdrecht MCM. Full-scale partial nitritation/anammox experiences: an application survey[J]. Water Research, 2014, 55: 292-303
    [4] Li XC, Peng YZ, Zhang JW, Du R. Highly efficient and synchronous nitrogen removal from ammonia-rich wastewater and domestic wastewater via a novel anammox coupled with double-nitrite-shunt process at low temperature[J]. Chemical Engineering Journal, 2021, 425: 131449
    [5] Van Der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht MCM. Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007, 41(18): 4149-4163
    [6] Cao YS, Loosdrecht MCM, Daigger GT. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383
    [7] Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate of anammox bacteria revisited[J]. Water Research, 2017, 116: 296-303
    [8] Wang WG, Xue H, Wang H, Ma J, Wu M, Wang YY. High adhesion ability of anammox granular microbes directly revealed by QCM-D technique[J]. Environmental Research, 2021, 194: 110646
    [9] Lotti T, Kleerebezem R, Abelleira-Pereira JM, Abbas B, Van Loosdrecht MCM. Faster through training: the anammox case[J]. Water Research, 2015, 81: 261-268
    [10] 许冬冬, 康达, 郭磊艳, 郑平. 厌氧氨氧化颗粒污泥研究进展[J]. 微生物学通报, 2019, 46(8): 1988-1997 Xu DD, Kang D, Guo LY, Zheng P. Research progress on anammox granular sludge[J]. Microbiology China, 2019, 46(8): 1988-1997 (in Chinese)
    [11] Hou XL, Liu ST, Zhang ZT. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75: 51-62
    [12] Niftrik L. Cell biology of unique anammox bacteria that contain an energy conserving prokaryotic organelle[J]. Antonie Van Leeuwenhoek, 2013, 104(4): 489-497
    [13] Kuenen JG. Anammox and beyond[J]. Environmental Microbiology, 2020, 22(2): 525-536
    [14] Van Niftrik L, Geerts WJC, Van Donselaar EG, Humbel BM, Webb RI, Fuerst JA, Verkleij AJ, Jetten MSM, Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: cell plan, glycogen storage, and localization of cytochrome C proteins[J]. Journal of Bacteriology, 2008, 190(2): 708-717
    [15] Nsenga Kumwimba M, Lotti T, Şenel E, Li XY, Suanon F. Anammox-based processes: how far have we come and what work remains? A review by bibliometric analysis[J]. Chemosphere, 2020, 238: 124627
    [16] Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg JLCM, Schmid MC, Sinninghe Damsté J, Jetten MSM, Strous M. Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium[J]. FEMS Microbiology Ecology, 2008, 63(1): 46-55
    [17] Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440(7085): 790-794
    [18] Hu BL, Rush D, Van Der Biezen E, Zheng P, Van Mullekom M, Schouten S, Sinninghe Damsté JS, Smolders AJP, Jetten MSM, Kartal B. New anaerobic, ammonium-oxidizing community enriched from peat soil[J]. Applied and Environmental Microbiology, 2011, 77(3): 966-971
    [19] Quan ZX, Rhee SK, Zuo JE, Yang Y, Bae JW, Park JR, Lee ST, Park YH. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor[J]. Environmental Microbiology, 2008, 10(11): 3130-3139
    [20] Schmid M, Walsh K, Webb R, Rijpstra WI, Van De Pas-Schoonen K, Verbruggen MJ, Hill T, Moffett B, Fuerst J, Schouten S, et al. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2003, 26(4): 529-538
    [21] Kartal B, Rattray J, Van Niftrik LA, Van De Vossenberg J, Schmid MC, Webb RI, Schouten S, Fuerst JA, Damsté JS, Jetten MSM, et al. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic and Applied Microbiology, 2007, 30(1): 39-49
    [22] Khramenkov SV, Kozlov MN, Kevbrina MV, Dorofeev AG, Kazakova EA, Grachev VA, Kuznetsov BB, Polyakov DY, Nikolaev YA. A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge[J]. Microbiology, 2013, 82(5): 628-636
    [23] Viancelli A, Kunz A, Esteves PA, Bauermann FV, Furukawa K, Fujii T, Antônio RV, Vanotti M. Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge[J]. Brazilian Archives of Biology and Technology, 2011, 54(5): 1035-1041
    [24] Kartal B, Van Niftrik L, Sliekers O, Schmid MC, Schmidt I, Van De Pas-Schoonen K, Cirpus I, Van Der Star W, Van Loosdrecht M, Abma W, et al. Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria[J]. Reviews in Environmental Science and Bio/Technology, 2004, 3(3): 255-264
    [25] Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’[J]. Microbiology, 2011, 157(6): 1706-1713
    [26] Araujo JC, Campos AC, Correa MM, Silva EC, Matté MH, Matté GR, Von Sperling M, Chernicharo CAL. Anammox bacteria enrichment and characterization from municipal activated sludge[J]. Water Science and Technology, 2011, 64(7): 1428-1434
    [27] Rothrock MJ, Vanotti MB, Szögi AA, Gonzalez MCG, Fujii T. Long-term preservation of anammox bacteria[J]. Applied Microbiology and Biotechnology, 2011, 92(1): 147-157
    [28] Narita Y, Zhang L, Kimura ZI, Ali M, Fujii T, Okabe S. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sapporoensis’[J]. Systematic and Applied Microbiology, 2017, 40(7): 448-457
    [29] Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger JW, Schleifer KH, Wagner M. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Systematic and Applied Microbiology, 2000, 23(1): 93-106
    [30] Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshikawa H, Hira D, Kindaichi T, Satoh H, Fujii T, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni’[J]. Environmental Microbiology, 2015, 17(6): 2172-2189
    [31] Nikolaev YA, Kozlov MN, Kevbrina MV, Dorofeev AG, Pimenov NV, Kallistova AY, Grachev VA, Kazakova EA, Zharkov AV, Kuznetsov BB, et al. Candidatus “Jettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation[J]. Microbiology, 2015, 84(2): 256-262
    [32] Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6932): 608-611
    [33] Van De Vossenberg J, Woebken D, Maalcke WJ, Wessels HJCT, Dutilh BE, Kartal B, Janssen-Megens EM, Roeselers G, Yan J, Speth D, et al. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium[J]. Environmental Microbiology, 2013, 15(5): 1275-1289
    [34] Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M, Jetten MSM, Fuchs BM, Amann R. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones[J]. Environmental Microbiology, 2008, 10(11): 3106-3119
    [35] Li H, Chen S, Mu BZ, Gu JD. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs[J]. Microbial Ecology, 2010, 60(4): 771-783
    [36] Hong YG, Li M, Cao HL, Gu JD. Residence of habitat-specific anammox bacteria in the deep-sea subsurface sediments of the South China sea: analyses of marker gene abundance with physical chemical parameters[J]. Microbial Ecology, 2011, 62(1): 36-47
    [37] Fuchsman CA, Staley JT, Oakley BB, Kirkpatrick JB, Murray JW. Free-living and aggregate-associated Planctomycetes in the black sea[J]. FEMS Microbiology Ecology, 2012, 80(2): 402-416
    [38] Brandsma J, Van De Vossenberg J, Risgaard-Petersen N, Schmid MC, Engström P, Eurenius K, Hulth S, Jaeschke A, Abbas B, Hopmans EC, et al. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden[J]. Environmental Microbiology Reports, 2011, 3(3): 360-366
    [39] Liu ST, Yang FL, Gong Z, Meng FG, Chen HH, Xue Y, Furukawa K. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology, 2008, 99(15): 6817-6825
    [40] Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria[J]. Environmental Microbiology, 2016, 18(9): 2784-2796
    [41] Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme C proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011
    [42] Wang WG, Xie HC, Wang H, Xue H, Wang JJ, Zhou MD, Dai XH, Wang YY. Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water[J]. Water Research, 2020, 184: 116197
    [43] Zhang FZ, Peng YZ, Liu YW, Zhao L. Improving stability of mch & Technology, 2019, 5(10): 1723-1735
    [83] Zhang J, Zhang YC, Wang XJ, Li J, Zhou RX, Wei J, Liang DB, Zhang K. Effects of substrate shock on release of AHL signals in ANAMMOX granules and properties of granules[J]. Environmental Science: Water Research & Technology, 2019, 5(4): 756-768
    [84] Zhang J, Li J, Zhao BH, Zhang YC, Wang XJ, Chen GH. Long-term effects of N-acyl-homoserine lactone-based quorum sensing on the characteristics of ANAMMOX granules in high-loaded reactors[J]. Chemosphere, 2019, 218: 632-642
    [85] Zhao R, Zhang HM, Zou X, Yang FL. Effects of inhibiting acylated homoserine lactones (AHLs) on anammox activity and stability of granules[J]. Current Microbiology, 2016, 73(1): 108-114
    [86] Tang X, Guo YZ, Jiang B, Liu ST. Metagenomic approaches to understanding bacterial communication during the anammox reactor start-up[J]. Water Research, 2018, 136: 95-103
    [87] Tang X, Guo YZ, Zhu TT, Tao HC, Liu ST. Identification of quorum sensing signal AHLs synthases in Candidatus Jettenia caeni and their roles in anammox activity[J]. Chemosphere, 2019, 225: 608-617
    [88] Guo YZ, Liu ST, Tang X, Yang FL. Role of c-di-GMP in anammox aggregation and systematic analysis of its turnover protein in Candidatus Jettenia caeni[J]. Water Research, 2017, 113: 181-190
    [89] Wang C, Liu ST, Xu XC, Guo YZ, Yang FL, Wang D. Role of cyclic diguanylate in affecting microbial community shifts at different pH during the operation of simultaneous partial nitrification, anammox and denitrification process[J]. Science of the Total Environment, 2018, 637/638: 155-162ray RGE. The effect of calcium on microbial aggregation during UASB reactor start-up[J]. Water Science and Technology, 1987, 19(1/2): 249-260
    [51] Schmidt JE, Ahring BK. Effects of magnesium on thermophilic acetate-degrading granules in upflow anaerobic sludge blanket (UASB) reactors[J]. Enzyme and Microbial Technology, 1993, 15(4): 304-310
    [52] Schmidt JEE, Ahring BK. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors[J]. Applied Microbiology and Biotechnology, 1994, 42(2/3): 457-462
    [53] Chen J, Lun SY. Study on mechanism of anaerobic sludge granulation in UASB reactors[J]. Water Science and Technology, 1993, 28(7): 171-178
    [54] Wilschut J, Hoekstra D. Membrane fusion: from liposomes to biological membranes[J]. Trends in Biochemical Sciences, 1984, 9(11): 479-483
    [55] 周律, 钱易. 好氧颗粒污泥的形成和技术条件[J]. 给水排水, 1995, 21(4): 11-13, 3 Zhou L, Qian Y. Formation and technical conditions of aerobic sludge pellet[J]. Water & Wastewater Engineering, 1995, 21(4): 11-13, 3 (in Chinese)
    [56] Fang HH. Microbial distribution in UASB granules and its resulting effects[J]. Water Science and Technology, 2000, 42(12): 201-208
    [57] Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33(10): 2283-2290
    [58] Liu Y, Tay JH. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563
    [59] Manonmani U, Joseph K. Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater[J]. Environmental Chemistry Letters, 2018, 16(3): 881-901
    [60] Wang WG, Wang H, Jiang ZW, Wang YY. Visual evidence for anammox granules expanding their size by aggregation of anammox micro-granules[J]. Science of the Total Environment, 2020, 745: 141052
    [61] Wang WG, Yan Y, Zhao YH, Shi Q, Wang YY. Characterization of stratified EPS and their role in the initial adhesion of anammox consortia[J]. Water Research, 2020, 169: 115223
    [62] Wang WG, Wang JJ, Wang H, Ma J, Wu M, Wang YY. Anammox granule enlargement by heterogenous granule self-assembly[J]. Water Research, 2020, 187: 116454
    [63] Adams M, Xie JX, Kabore AWJ, Chang YF, Xie JW, Guo ML, Chen CJ. Research advances in anammox granular sludge: a review[J]. Critical Reviews in Environmental Science and Technology, 2020: 1-44
    [64] Yin CQ, Meng FG, Chen GH. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria[J]. Water Research, 2015, 68: 740-749
    [65] Jia FX, Yang Q, Liu XH, Li XY, Li BK, Zhang L, Peng YZ. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268
    [66] Fernández I, Vázquez-Padín JR, Mosquera-Corral A, Campos JL, Méndez R. Biofilm and granular systems to improve anammox biomass retention[J]. Biochemical Engineering Journal, 2008, 42(3): 308-313
    [67] Ni SQ, Fessehaie A, Lee PH, Gao BY, Xu X, Sung S. Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure[J]. Bioresource Technology, 2010, 101(18): 6910-6915
    [68] 丛岩, 黄晓丽, 王小龙, 高大文. 厌氧氨氧化颗粒污泥的快速形成[J]. 化工学报, 2014, 65(2): 664-671 Cong Y, Huang XL, Wang XL, Gao DW. Faster formation of anammox granular sludge[J]. CIESC Journal, 2014, 65(2): 664-671 (in Chinese)
    [69] Zhang K, Lyu LT, Kang TL, Yao S, Ma YG, Pan Y, Wang YZ, Furukawa K, Hao LY, Zhu T. A rapid and effective way to cultivate anammox granular sludge through vibration[J]. International Biodeterioration & Biodegradation, 2019, 143: 104704
    [70] Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review[J]. Biotechnology Advances, 2010, 28(6): 882-894
    [71] Peeters SH, Van Niftrik L. Trending topics and open questions in anaerobic ammonium oxidation[J]. Current Opinion in Chemical Biology, 2019, 49: 45-52
    [72] Chen ZJ, Meng YB, Sheng BB, Zhou ZB, Jin C, Meng FG. Linking exoproteome function and structure to anammox biofilm development[J]. Environmental Science & Technology, 2019, 53(3): 1490-1500
    [73] Wang S, Liu LJ, Li HX, Fang F, Yan P, Chen YP, Guo JS, Ma TF, Shen Y. The branched chains and branching degree of exopolysaccharides affecting the stability of anammox granular sludge[J]. Water Research, 2020, 178: 115818
    [74] Boleij M, Kleikamp H, Pabst M, Neu TR, Van Loosdrecht MCM, Lin YM. Decorating the anammox house: sialic acids and sulfated glycosaminoglycans in the extracellular polymeric substances of anammox granular sludge[J]. Environmental Science & Technology, 2020, 54(8): 5218-5226
    [75] Boleij M, Seviour T, Wong LL, Van Loosdrecht MCM, Lin YM. Solubilization and characterization of extracellular proteins from anammox granular sludge[J]. Water Research, 2019, 164: 114952
    [76] Wong LL, Natarajan G, Boleij M, Thi SS, Winnerdy FR, Mugunthan S, Lu Y, Lee JM, Lin YM, Loosdrecht M, et al. Extracellular protein isolation from the matrix of anammox biofilm using ionic liquid extraction[J]. Applied Microbiology and Biotechnology, 2020, 104(8): 3643-3654
    [77] Boleij M, Pabst M, Neu TR, Van Loosdrecht MCM, Lin YM. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge[J]. Environmental Science & Technology, 2018, 52(22): 13127-13135
    [78] 丁爽, 郑平, 张萌, 陆慧锋. 厌氧氨氧化菌群体感应系统研究[J]. 生态学报, 2012, 32(8): 2581-2587 Ding S, Zheng P, Zhang M, Lu HF. Quorum sensing in anaerobic ammonium oxidation bacteria[J]. Acta Ecologica Sinica, 2012, 32(8): 2581-2587 (in Chinese)
    [79] Tang X, Liu ST, Zhang ZT, Zhuang GQ. Identification of the release and effects of AHLs in anammox culture for bacteria communication[J]. Chemical Engineering Journal, 2015, 273: 184-191
    [80] Li JL, Li JZ, Meng J, Sun K. Understanding of signaling molecule controlled anammox through regulating C/N ratio[J]. Bioresource Technology, 2020, 315: 123863
    [81] Sun YP, Guan YT, Zeng DF, He K, Wu GX. Metagenomics-based interpretation of AHLs-mediated quorum sensing in anammox biofilm reactors for low-strength wastewater treatment[J]. Chemical Engineering Journal, 2018, 344: 42-52
    [82] Zhang J, Zhang YZ, Zhao BH, Zhang K, Liang DB, Wei J, Wang XJ, Li J, Chen GH. Effects of pH on AHL signal release and properties of ANAMMOX granules with different biomass densities[J]. Environmental Science: Water Resear
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Weigang, WANG Tong, FAN Yufei, WANG Yayi. Research progress on the aggregation mechanism of anammox granular sludge[J]. Microbiology China, 2022, 49(5): 1927-1940

Copy
Share
Article Metrics
  • Abstract:396
  • PDF: 960
  • HTML: 1742
  • Cited by: 0
History
  • Received:September 27,2021
  • Adopted:December 08,2021
  • Online: May 05,2022
Article QR Code