Application progress of atmospheric and room temperature plasma mutation breeding and microbial microdroplet culture screening technology
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [72]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    Safe and efficient microbial mutagenesis and high-throughput screening techniques are important for discovering microbial functions,endowing microbes with new functions,and developing new technology for biological industry.Thus,effective breeding and high-throughput screening techniques have attracted the interest of researchers.Atmospheric and room temperature plasma (ARTP),characterized by rich reactive species,ease of operation,severe DNA damage,high efficiency,moderate operation conditions,and high safety,has been used for the mutation breeding of over 100 microorganisms,animals,and plants,particularly the efficient breeding of microorganisms.Microbial microdroplet culture (MMC) generates a large number of microdroplets in a short time,with independent control of individual droplets and each droplet as an independent micro-cultivator.Attributing to the small volume,high throughput,good controllability,and real-time monitoring,the modularized system allows high-throughput cultivation and adaptive evolution of microbes,demonstrating unique advantages in high-throughput culture of microbes.This review summarized the application of ARTP to the breeding of edible and medicinal mushrooms and MMC system to high-throughput sorting of microbes,which is expected to serve as a reference for the breeding of edible and medicinal fungi.

    Reference
    [1] 朱瑞敏,邱晨曦,韩悦,丁延芹,杜秉海,汪城墙.微生物育种物理诱变技术ARTP的应用进展[J].生物技术世界, 2016, 13(4):20-23 Zhu RM, Qiu CX, Han Y, Ding YQ, Du BH, Wang CQ. The application progress of ARTP which is a physical mutation breeding technology of microorganism[J]. Biotech World, 2016, 13(4):20-23(in Chinese)
    [2] Ye LT, Ye RF, Hu FX, Wang GZ. Combination of atmospheric and room temperature plasma (ARTP) mutagenesis, genome shuffling and dimethyl sulfoxide (DMSO) feeding to improve FK506 production in Streptomyces tsukubaensis[J]. Biotechnology Letters, 2021, 43(9):1809-1820
    [3] 邢新会,张翀,李和平,王立言. ARTP技术在食用真菌育种中的应用进展[A]//中国菌物学会[C].西安, 2019:306 Xing XH, Zhang C, Li HP, Wang LY. Application progress of ARTP mutation technology in edible fungi breeding[A]//Mycological Society of China[C]. Xi'an, 2019:306(in Chinese)
    [4] Li J, Guo SY, Hua Q, Hu FX. Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling[J]. Biotechnology Letters, 2021, 43(6):1143-1154
    [5] 徐欢欢,张红兵,李会宣,李磊.常压室温等离子体技术在微生物诱变中的应用进展[J].生物技术进展, 2020, 10(4):358-362 Xu HH, Zhang HB, Li HX, Li L. Application progress of atmospheric and room temperature plasma technology in microbial mutagenesis[J]. Current Biotechnology, 2020, 10(4):358-362(in Chinese)
    [6] Cai M, Wu YZ, Qi H, He JZ, Wu ZZ, Xu HJ, Qiao MQ. Improving the level of the tyrosine biosynthesis pathway in Saccharomyces cerevisiae through HTZ1 knockout and atmospheric and room temperature plasma (ARTP) mutagenesis[J]. ACS Synthetic Biology, 2021, 10(1):49-62
    [7] 付显锋,吕晓东,陈金良,卢淑芳,张利英.香菇菌株高温栽培筛选研究[J].北方园艺, 2020(21):116-122 Fu XF, Lyu XD, Chen JL, Lu SF, Zhang LY. Study on screening of high temperature cultivation of Lentinus edodes[J]. Northern Horticulture, 2020(21):116-122(in Chinese)
    [8] 林杨,布丽根×加冷别克,孙建,谭慧林,周洁,刘少杰,王伟,顾美英,张志东.乳酸菌的筛选及高产酸菌株的常压室温等离子体诱变选育[J].食品与发酵工业, 2021, 47(12):176-181 Lin Y, Buligen×JLBK, Sun J, Tan HL, Zhou J, Liu SJ, Wang W, Gu MY, Zhang ZD. Screening of lactic acid bacteria and breeding of high acid producing strain by ARTP mutation[J]. Food and Fermentation Industries, 2021, 47(12):176-181(in Chinese)
    [9] 刘广建,郑惠华,蒋益,张辰,薛璟,季宏更,张蕾.蛹虫草高产菌丝体蛋白菌株的ARTP诱变选育[J].食用菌, 2020, 42(5):12-14, 18 Liu GJ, Zheng HH, Jiang Y, Zhang C, Xue J, Ji HG, Zhang L. ARTP mutagenesis and breeding of Cordyceps militaris strains with high mycelium protein[J]. Edible Fungi, 2020, 42(5):12-14, 18(in Chinese)
    [10] 姚青蔚.产油丝状真菌的筛选及诱变育种[D].无锡:江南大学硕士学位论文, 2017 Yao QW. Screening and mutation breeding of oleaginous filamentous fungi[D]. Wuxi:Master's Thesis of Jiangnan University, 2017(in Chinese)
    [11] 张赫男,汪雯翰,曲德辉,唐传红,张劲松,吴迪,杨焱.利用常压室温等离子体诱变技术选育高产黄酮的桑黄菌株[J].食用菌学报, 2018, 25(2):49-55 Zhang HN, Wang WH, Qu DH, Tang CH, Zhang JS, Wu D, Yang Y. Rational seletion of Phellinus baumii mutants for improved intracellular flavonoids biosynthesis by atmospheric room temperature plasma mutagenesis[J]. Acta Edulis Fungi, 2018, 25(2):49-55(in Chinese)
    [12] 张赫男,曲德辉,杨焱,唐传红,张劲松,颜梦秋.桑黄菌株的物理诱变及优势菌株的筛选[A]//中国菌物学会[C].福州, 2016:258-259 Zhang HN, Qu DH, Yang Y, Tang CH, Zhang JS, Yan MQ. Physical mutagenesis of Phellinus baumii mutants and screening of dominant strains[A]//Mycological Society of China[C]. Fuzhou, 2016:258-259(in Chinese)
    [13] 李正鹏,陈万超,张赫男,张忠,吴迪,杨焱.暴马桑黄新品种'沪桑2号'[J/].园艺学报, 2021. Doi:10.16420/j.issn.0513-353x.2021-0124 Li ZP, Chen WC, Zhang HN, Zhang Z, Wu D, Yang Y. A new Sanghuangporus baumii cultivar'Husang 2'[J]. Acta Horticulturae Sinica, 2021. Doi:10.16420/j.issn. 0513-353x.2021-0124(in Chinese)
    [14] 张越野,唐传红,谭贻,冯娜,刘艳芳,唐庆九,张劲松. ARTP诱变灵芝菌株筛选高抗氧化能力新菌株研究[A]//中国食品科学技术学会第十七届年会论文集[C].西安, 2020:311-312 Zhang YY, Tang CH, Tan Y, Feng N, Liu YF, Tang QJ, Zhang JS. Screening new strains with high antioxidant capacity by ARTP mutagenesis of Ganoderma lucidum[A]//Abstracts of the 17th annual meeting of Chinese society of food science and technology[C]. Xi'an, 2020:311-312(in Chinese)
    [15] 李塬,张赫男,谭贻,刘艳芳,冯杰,张越野,唐传红,张劲松.常压室温等离子体诱变选育高产多糖灵芝新菌株[J].食用菌学报, 2021, 28(2):36-41 Li Y, Zhang HN, Tan Y, Liu YF, Feng J, Zhang YY, Tang CH, Zhang JS. Screening of a high polysaccharide content Ganoderma lucidum strain by ARTP[J]. Acta Edulis Fungi, 2021, 28(2):36-41(in Chinese)
    [16] 杨珊,杨焱,李巧珍,吴迪,杨瑞恒,汪文翰,张赫男.常压室温等离子体诱变筛选高产多糖猴头菌株的研究[J].上海农业学报, 2019, 35(5):6-11 Yang S, Yang Y, Li QZ, Wu D, Yang RH, Wang WH, Zhang HN. Screening of high-yield polysaccharide Hericium erinareus by atmospheric and room temperature plasma mutagenesis[J]. Acta Agriculturae Shanghai, 2019, 35(5):6-11(in Chinese)
    [17] Qiu L, Nie SX, Hu SJ, Wang SJ, Wang JJ, Guo K. Screening of Beauveria bassiana with high biocontrol potential based on ARTP mutagenesis and high-throughput FACS[J]. Pesticide Biochemistry and Physiology, 2021, 171:104732
    [18] 王晨,马欣欣,平琳琳,王谦. ARTP技术选育黑木耳优良发酵菌株初探[J].中国食用菌, 2021, 40(3):17-22, 26 Wang C, Ma XX, Ping LL, Wang Q. Preliminary study on breeding excellent fermentation strains of Auricularia auriculae by ARTP mutation technology[J]. Edible Fungi of China, 2021, 40(3):17-22, 26(in Chinese)
    [19] 何建华,蒋玮,吕贝贝,李鹏,武国干,王金斌,祝子坪,吴潇,唐雪明. ARTP诱变筛选草菇优良菌株及RAPD分析[J].核农学报, 2014, 28(11):1950-1955 He JH, Jiang W, Lü BB, Li P, Wu GG, Wang JB, Zhu ZP, Wu X, Tang XM. Screening and RAPD analysis of Volvariella volvacea ARTP mutants[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(11):1950-1955(in Chinese)
    [20] 孙艳颖.香菇、滑子菇新品种选育研究[D].石家庄:河北师范大学硕士学位论文, 2015 Sun YY. Studies on the breeding of new varieties of Lentinula edodes and Pholiota nameko[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2015(in Chinese)
    [21] Zeng WZ, Guo LK, Xu S, Chen J, Zhou JW. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology, 2020, 38(8):888-906
    [22] Wang YT, Zhang XX, Shang LR, Zhao YJ. Thriving microfluidic technology[J]. Science Bulletin, 2021, 66(1):9-12
    [23] 钟明浩,郭钟宁,刘宇迅.基于微流控技术的液滴微颗粒分选[J].微纳电子技术, 2021, 58(4):332-336 Zhong MH, Guo ZN, Liu YX. Droplet micro-particle separation based on microfluidic technology[J]. Micronanoelectronic Technology, 2021, 58(4):332-336(in Chinese)
    [24] 刘卫枝.基于微流控技术的单细胞精确操控平台的建立及其在单细胞分析中的应用[D].厦门:厦门大学硕士学位论文, 2019 Liu WZ. Construction of single-cell precise manipulation platform based on microfluidics and its application in single cell analysis[D]. Xiamen:Master's Thesis of Xiamen University, 2019(in Chinese)
    [25] 闫嘉航,赵磊,申少斐,马超,王进义.液滴微流控技术在生物医学中的应用进展[J].分析化学, 2016, 44(4):562-568 Yan JH, Zhao L, Shen SF, Ma C, Wang JY. Application progress of droplet-based microfluidics in biomedicine[J]. Chinese Journal of Analytical Chemistry, 2016, 44(4):562-568(in Chinese)
    [26] McDaniel J, McDaniel S, Samiano BJ, Marrujo M, Kingsley K, Howard KM. Microbial screening reveals oral site-specific locations of the periodontal pathogen Selenomonas noxia[J]. Current Issues in Molecular Biology, 2021, 43(1):353-364
    [27] Fitzsimons MS, Novotny M, Lo CC, Dichosa AEK, Yee-Greenbaum JL, Snook JP, Gu W, Chertkov O, Davenport KW, McMurry K, et al. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome[J]. Genome Research, 2013, 23(5):878-888
    [28] Sano M, Yada R, Nomura Y, Kusukawa T, Ando H, Matsumoto K, Wada K, Tanaka T, Ohara H, Aso Y. Microbial screening based on the mizoroki-heck reaction permits exploration of hydroxyhexylitaconic-acid-producing fungi in soils[J]. Microorganisms, 2020, 8(5):648
    [29] 陈梦月,郝秀清,李子一,徐文豪,李亮.微流控通道加工技术的研究进展[J].微纳电子技术, 2021, 58(3):244-253 Chen MY, Hao XQ, Li ZY, Xu WH, Li L. Research progress on processing technology of microfluidic channels[J]. Micronanoelectronic Technology, 2021, 58(3):244-253(in Chinese)
    [30] Evans GWH, Bhuiyan WT, Pang SS, Warren B, Makris K, Coleman S, Hassan SU, Niu XZ. A portable droplet microfluidic device for cortisol measurements using a competitive heterogeneous assay[J]. The Analyst, 2021, 146(14):4535-4544
    [31] 郑杰,王洪,闫延鹏,崔建国.微流控芯片液滴生成与检测技术研究进展[J].应用化学, 2021, 38(1):1-10 Zheng J, Wang H, Yan YP, Cui JG. Research progress of droplet generation and detection technology of microfluidic chip[J]. Chinese Journal of Applied Chemistry, 2021, 38(1):1-10(in Chinese)
    [32] 孙薇,陆敏,李立,张咏适.微流控芯片技术应用进展[J].中国国境卫生检疫杂志, 2019, 42(3):221-224 Sun W, Lu M, Li L, Zhang YS. Application progress on microfluidic chip technology[J]. Chinese Journal of Frontier Health and Quarantine, 2019, 42(3):221-224(in Chinese)
    [33] 王楷宬,孙瑞妮,姜楠,姜利建,庄青叶,李阳,王素春,张富友,赵成龙,潘子豪,等.微流控芯片技术在微生物检测中的应用[J].中国动物检疫, 2021, 38(1):87-93 Wang KC, Sun RN, Jiang N, Jiang LJ, Zhuang QY, Li Y, Wang SC, Zhang FY, Zhao CL, Pan ZH, et al. Application of microfluidic chip technology in microbial detection[J]. China Animal Health Inspection, 2021, 38(1):87-93(in Chinese)
    [34] 王行政,孙泽勇,陈东.微流控技术制备液滴悬浮液的研究[J].现代化工, 2020, 40(9):70-74, 79 Wang XZ, Sun ZY, Chen D. Preparation of droplet suspension by microfluidic technology[J]. Modern Chemical Industry, 2020, 40(9):70-74, 79(in Chinese)
    [35] 何玲宇,王疏影,赵飞,龙妍婷,陈翔.一种新型单细胞微流控捕获芯片的制作及系统搭建[J].功能材料与器件学报, 2020, 26(6):412-418 He LY, Wang SY, Zhao F, Long YT, Chen X. Fabrication of a new single-cell microfluidic capture chip and system construction[J]. Journal of Functional Materials and Devices, 2020, 26(6):412-418(in Chinese)
    [36] 贾亦琛,徐胜男,林淑英,王晨,张月颖,兰添,宋婷婷,陈培培,宋波.基于微流控技术的细菌检测技术研究[J].科技创新导报, 2020, 17(15):79-80 Jia YC, Xu SN, Lin SY, Wang C, Zhang YY, Lan T, Song TT, Chen PP, Song B. Research on bacterial detection technology based on microfluidic technology[J]. Science and Technology Innovation Herald, 2020, 17(15):79-80(in Chinese)
    [37] 荣楠,李备,唐昊冶,林先贵,冯有智.微生物菌种筛选技术方法研究进展[J].土壤, 2021, 53(2):236-242 Rong N, Li B, Tang HY, Lin XG, Feng YZ. Advances in strain isolating technique and method for microorganisms[J]. Soils, 2021, 53(2):236-242(in Chinese)
    [38] 张雷成.基于微流控技术的微生物筛选、固定与自组装研究[D].武汉:华中科技大学博士学位论文, 2019 Zhang LC. Microfluidic technologies for microbial screening, immobilization and self-assembly[D]. Wuhan:Doctoral Dissertation of Huazhong University of Science and Technology, 2019(in Chinese)
    [39] Wang J, Jian XJ, Xing XH, Zhang C, Fei Q. Empowering a methanol-dependent Escherichia coli via adaptive evolution using a high-throughput microbial microdroplet culture system[J]. Frontiers in Bioengineering and Biotechnology, 2020. DOI:10.3389/fbioe.2020.00570
    [40] 郭肖杰,王立言,张翀,邢新会.高通量自动化微生物微液滴进行培养与筛选技术及其装备化[J].生物工程学报, 2021, 37(3):991-1003 Guo XJ, Wang LY, Zhang C, Xing XH. Technology development and instrumentation of a high-throughput and automated microbial microdroplet culture system for microbial evolution and screening[J]. Chinese Journal of Biotechnology, 2021, 37(3):991-1003
    [41] Chen J, Vestergaard M, Jensen TG, Shen J, Dufva M, Solem C, Jensen PR. Finding the needle in the haystack-the use of microfluidic droplet technology to identify vitamin-secreting lactic acid bacteria[J]. mBio, 2017. DOI:10.1128/mbio.00526-17
    [42] 王洁.多孔微载体的微流控制备及其在细胞培养中的应用[D].南京:东南大学博士学位论文, 2019 Wang J. Microfluidic generation of porous microcarriers for cell research[D]. Nanjing:Doctoral Dissertation of Southeast University, 2019(in Chinese)
    [43] Wang Y, Li QG, Zheng P, Guo YM, Wang LX, Zhang TC, Sun JB, Ma YH. Evolving the L-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method[J]. Journal of Industrial Microbiology& Biotechnology, 2016, 43(9):1227-1235
    [44] Lyu X, Song JL, Yu B, Liu HL, Li C, Zhuang YP, Wang YH. High-throughput system for screening of high L-lactic acid-productivity strains in deep-well microtiter plates[J]. Bioprocess and Biosystems Engineering, 2016, 39(11):1737-1747
    [45] 陈宇锟,黎青华,周景文,张国强,李江华.基于液滴微流控的产α-淀粉酶地衣芽孢杆菌高通量筛选[J].食品与发酵工业, 2021, 47(17):41-46 Chen YK, Li QH, Zhou JW, Zhang GQ, Li JH. High-throughput screening of α-amylase-producing Bacillus licheniformis based on droplet microfluidic system[J]. Food and Fermentation Industries, 2021, 47(17):41-46(in Chinese)
    [46] 梁怡萧,潘建章,方群.基于微流控技术的细胞水平高通量药物筛选系统的研究进展[J].色谱, 2021, 39(6):567-577 Liang YX, Pan JZ, Fang Q. Research advances of high-throughput cell-based drug screening systems based on microfluidic technique[J]. Chinese Journal of Chromatography, 2021, 39(6):567-577(in Chinese)
    [47] Jian XJ, Guo XJ, Wang J, Tan ZL, Xing XH, Wang LY, Zhang C. Microbial microdroplet culture system (MMC):an integrated platform for automated, high-throughput microbial cultivation and adaptive evolution[J]. Biotechnology and Bioengineering, 2020, 117(6):1724-1737
    [48] 苑昊.基于微流控技术的环境中金黄色葡萄球菌的检测研究[D].上海:复旦大学硕士学位论文, 2014 Yuan H. The study of detection of Staphylococcus aureus in environment based on microfluidics[D]. Shanghai:Master's Thesis of Fudan University, 2014(in Chinese)
    [49] 胡冲.基于荧光纳米颗粒标记的芯片介电电泳技术检测沙门氏菌[D].长沙:湖南大学硕士学位论文, 2012 Hu C. Detection of Salmonella typhimurium based on fluorescent nanoparticles labeling and microfluidic chip-dielectrophoresis technology[D]. Changsha:Master's Thesis of Hunan University, 2012(in Chinese)
    [50] 李永新,黎源倩,渠凌丽,何成艳.微流控芯片-激光诱导荧光快速检测4种食源性致病菌[J].分析化学, 2008, 36(12):1667-1671 Li YX, Li YQ, Qu LL, He CY. Microfluidic chip electrophoresis with laser-induced fluorescence detection for rapid analysis of four foodborne pathogenic bacteria[J]. Chinese Journal of Analytical Chemistry, 2008, 36(12):1667-1671(in Chinese)
    [51] 郑晓风,郑晓琴,石莉,刘英玉,姚刚,张晓红.大肠埃希菌与沙门菌纸基微流控联合检测试纸在沙门菌检测中的应用[J].动物医学进展, 2018, 39(9):45-49 Zheng XF, Zheng XQ, Shi L, Liu YY, Yao G, Zhang XH. Application of paper-based microfluidic test strips of Escherichia coli and Salmonella in detection of Salmonella[J]. Progress in Veterinary Medicine, 2018, 39(9):45-49(in Chinese)
    [52] 薛媛媛.食源性致病沙门氏菌的纸基微流控芯片检测研究[D].杨凌:西北农林科技大学硕士学位论文, 2016 Xue YY. Study on the detection of food-borne pathogenic Salmonella by the paper-based microfluidic device[D]. Yangling:Master's Thesis of Northwest A& F University, 2016(in Chinese)
    [53] 贾亦琛,宋婷婷.基于微流控技术的细菌快速检测技术研究[J].智慧健康, 2021, 7(6):36-38 Jia YC, Song TT. Research on rapid detection technology of bacteria based on microfluidic technology[J]. Smart Healthcare, 2021, 7(6):36-38(in Chinese)
    [54] 范一灵,王淑娟,李琼琼,胡颖,宋明辉,秦峰,刘浩,杨美成.重组酶聚合酶扩增检测产志贺毒素大肠埃希菌的微流控芯片技术[J].食品科学, 2021, 42(10):297-304 Fan YL, Wang SJ, Li QQ, Hu Y, Song MH, Qin F, Liu H, Yang MC. Rapid detection of shiga toxin-producing Escherichia coli by recombinase polymerase amplification combined with centrifugal compact disc microfluidic chip[J]. Food Science, 2021, 42(10):297-304(in Chinese)
    [55] 李虹庆.聚苹果酸生产菌的高通量筛选及发酵特性研究[D].重庆:西南大学硕士学位论文, 2017 Li HQ. High throughput screening of poly malic acid producing strain and investigating its fermentation characteristics[D]. Chongqing:Master's Thesis of Southwest University, 2017(in Chinese)
    [56] 郑振.基于液滴微流控芯片的抗白念珠菌药物筛选平台初步构建及应用研究[D].上海:第二军医大学硕士学位论文, 2017 Zheng Z. Development and application of drug screening platform against Candida albicans based on droplet microfluidics[D]. Shanghai:Master's Thesis of Second Military Medical University, 2017(in Chinese)
    [57] 郑振,陈阳,李武宏,朱臻宇,洪战英,柴逸峰.基于液滴微流控芯片技术的抗白念珠菌药物筛选研究[J].药学学报, 2017, 52(12):1884-1889 Zheng Z, Chen Y, Li WH, Zhu ZY, Hong ZY, Chai YF. Study on droplet microfluidic chips for drug screening against Candida albicans[J]. Acta Pharmaceutica Sinica, 2017, 52(12):1884-1889(in Chinese)
    [58] 张蔚.基于微流控芯片的大肠杆菌富集与检测性能研究[D].重庆:重庆大学硕士学位论文, 2017 Zhang W. Study on enrichment of Escherichia coli and detection performance in a microfluidic chip[D]. Chongqing:Master's Thesis of Chongqing University, 2017(in Chinese)
    [59] Wen XX, Xu BL, Wang WX, Liang GT, Chen B, Yang YM, Liu DY. Rapid identification of multiple bacteria on a microfluidic chip[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):791-798
    [60] 吕彤,涂然,袁会领,刘浩,王钦宏.毕赤酵母液滴微流控高通量筛选方法的建立与应用[J].生物工程学报, 2019, 35(7):1317-1325 Lü T, Tu R, Yuan HL, Liu H, Wang QH. Development and application of a droplet-based microfluidic high-throughput screening of Pichia pastoris[J]. Chinese Journal of Biotechnology, 2019, 35(7):1317-1325(in Chinese)
    [61] 赵莹彤,浑婷婷,詹悦维,范婷文,赵峰,钞亚鹏,孙艳.基于微流控的真菌单细胞捕获和培养[J].微生物学通报, 2019, 46(3):522-530 Zhao YT, Hun TT, Zhan YW, Fan TW, Zhao F, Chao YP, Sun Y. Single cell capture and culture of fungi based on microfluidic[J]. Microbiology China, 2019, 46(3):522-530(in Chinese)
    [62] 郝良玉,曲晗,李志萍,王习文,王宇田,孙瑞,崔煜菲,夏志平,李乾学.微流控技术在病原微生物检测中的应用[J].检验医学与临床, 2018, 15(21):3299-3302 Hao LY, Qu H, Li ZP, Wang XW, Wang YT, Sun R, Cui YF, Xia ZP, Li QX. Application of pathogenic microorganisms by microfluidic technology[J]. Laboratory Medicine and Clinic, 2018, 15(21):3299-3302(in Chinese)
    [63] Beneyton T, Thomas S, Griffiths AD, Nicaud JM, Drevelle A, Rossignol T. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica[J]. Microbial Cell Factories, 2017, 16(1):1-14
    [64] 张旭.基于微流控液滴的单细胞培养及筛选平台[D].重庆:西南大学硕士学位论文, 2015 Zhang X. Agarose beads-based long-term single-cell culture and sorting for rapid growth Haematococcus pluvialis microalgae screening[D]. Chongqing:Master's Thesis of Southwest University, 2015(in Chinese)
    [65] Huang MT, Bai YP, Sjostrom SL, Hallström BM, Liu ZH, Petranovic D, Uhlén M, Joensson HN, Andersson-Svahn H, Nielsen J. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast[J]. PNAS, 2015, 112(34):E4689-E4696
    [66] 黄文平.基于微流控芯片技术筛选尿嘧啶核苷营养缺陷型米曲霉诱变菌株[D].南昌:南昌大学硕士学位论文, 2020 Huang WP. Screening of mutagenic mutations of Aspergillus oryzae based on microfluidic chip technology[D]. Nanchang:Master's Thesis of Nanchang University, 2020(in Chinese)
    [67] 林玲.微/纳流控单细胞分析方法[J].生命科学仪器, 2020, 18(4):19-26, 11 Lin L. Micro/nanofluidics for single cell analysis[J]. Life Science Instruments, 2020, 18(4):19-26, 11(in Chinese)
    [68] 何想,马国梁,汪杨,赵常,刘汉龙,楚剑,肖杨.基于微流控芯片技术的微生物加固可视化研究[J].岩土工程学报, 2020, 42(6):1005-1012 He X, Ma GL, Wang Y, Zhao C, Liu HL, Chu J, Xiao Y. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6):1005-1012(in Chinese)
    [69] 段玉.用于单微球阵列捕获与单细胞力学分析的微流体芯片研究[D].深圳:深圳大学硕士学位论文, 2019 Duan Y. The study of a microfluidic chip for single microsphere capture array and single cell mechanical analysis[D]. Shenzhen:Master's Thesis of Shenzhen University, 2019(in Chinese)
    [70] Barata D, Van Blitterswijk C, Habibovic P. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics[J]. Acta Biomaterialia, 2016, 34:1-20
    [71] Zeng WZ, Xu BB, Du GC, Chen J, Zhou JW. Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of L-DOPA[J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(12):1631-1641
    [72] Yu ZY, Geisler K, Leontidou T, Young REB, Vonlanthen SE, Purton S, Abell C, Smith AG. Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications[J]. Algal Research, 2021, 56:102293
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TANG Chenmin, ZHANG Jingsong, LIU Yanfang, TANG Qingjiu, FENG Na, TANG Chuanhong, WANG Jinyan, TAN Yi, LIU Liping, FENG Jie. Application progress of atmospheric and room temperature plasma mutation breeding and microbial microdroplet culture screening technology[J]. Microbiology China, 2022, 49(3): 1177-1194

Copy
Share
Article Metrics
  • Abstract:611
  • PDF: 944
  • HTML: 1262
  • Cited by: 0
History
  • Received:August 04,2021
  • Adopted:October 15,2021
  • Online: March 07,2022
Article QR Code