Progress of adaptive laboratory evolution for industrial strain breeding
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [58]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Adaptive laboratory evolution is a method of screening mutant strains with specific phenotypes by long-term domestication under certain selection pressure. In recent years, this method has been widely used to screen industrial production strains with excellent characteristics through specific evolutionary conditions and screening strategies, such as specific phenotypic screening, efficient use of substrates, target product synthesis, and growth characteristics optimization. In this review, the typical examples and research progress of adaptive laboratory evolution for the breeding of industrial production strains were summarized, the existing problems and solutions were discussed. The prospect of this technology was also forecasted.

    Reference
    [1] Lee S, Kim P. Current status and applications of adaptive laboratory evolution in industrial microorganisms[J]. Journal of Microbiology and Biotechnology, 2020, 30(6):793-803
    [2] LaCroix RA, Sandberg TE, O'Brien EJ, Utrilla J, Ebrahim A, Guzman GI, Szubin R, Palsson BO, Feist AM. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium[J]. Applied and Environmental Microbiology, 2015, 81(1):17-30
    [3] Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology[J]. Metabolic Engineering, 2019, 56:1-16
    [4] 朱晁谊, 朱牧孜, 李爽. 微生物实验室进化的研究进展[J]. 生物加工过程, 2019, 17(1):8-14, 22 Zhu CY, Zhu MZ, Li S. Research progress in microbial laboratory evolution[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(1):8-14, 22(in Chinese)
    [5] Dragosits M, Mattanovich D. Adaptive laboratory evolution-principles and applications for biotechnology[J]. Microbial Cell Factories, 2013, 12(1):64
    [6] Gresham D, Dunham MJ. The enduring utility of continuous culturing in experimental evolution[J]. Genomics, 2014, 104(6):399-405
    [7] Wu YN, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution[J]. Trends in Biotechnology, 2021. DOI:https://doi.org/10.1016/j.tibtech.2021.04.002
    [8] Long CP, Antoniewicz MR. How adaptive evolution reshapes metabolism to improve fitness:recent advances and future outlook[J]. Current Opinion in Chemical Engineering, 2018, 22:209-215
    [9] Conrad TM, Lewis NE, Palsson BØ. Microbial laboratory evolution in the era of genome-scale science[J]. Molecular Systems Biology, 2011, 7:509
    [10] 李建, 孔婧, 李圣龙, 赵禹, 赵雅坤, 肖冬光, 于爱群. 适应性实验室进化技术在微生物育种中的应用进展[J]. 生物工程学报, 2021, 37(1):130-141 Li J, Kong J, Li SL, Zhao Y, Zhao YK, Xiao DG, Yu AQ. Advances in adaptive laboratory evolutionary engineering to microbial breeding[J]. Chinese Journal of Biotechnology, 2021, 37(1):130-141(in Chinese)
    [11] Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, Waterston RH. DNA sequencing at 40:past, present and future[J]. Nature, 2017, 550(7676):345-353
    [12] 贺雪婷, 张敏华, 洪解放, 马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展[J]. 中国生物工程杂志, 2018, 38(9):81-87 He XT, Zhang MH, Hong JF, Ma YY. Research progress on butanol-tolerant strain and tolerance mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9):81-87(in Chinese)
    [13] 巩继贤, 郑辉杰, 郑宗宝, 段楠, 陈涛, 赵学明. 微生物进化工程育种技术进展与展望[J]. 生物加工过程, 2010, 8(2):69-76 Gong JX, Zheng HJ, Zheng ZB, Duan N, Chen T, Zhao XM. Strain improvement by evolutionary engineering:progress and perspective[J]. Chinese Journal of Bioprocess Engineering, 2010, 8(2):69-76(in Chinese)
    [14] Yu T, Zhou YJ, Huang MT, Liu QL, Pereira R, David F, Nielsen J. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis[J]. Cell, 2018, 174(6):1549-1558
    [15] Chen ML, Ma CW, Chen L, Zeng AP. Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis[J]. Metabolic Engineering Communications, 2021, 12:e00167
    [16] Kawai K, Kanesaki Y, Yoshikawa H, Hirasawa T. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis[J]. Journal of Bioscience and Bioengineering, 2019, 128(2):162-169
    [17] 蒋玲艳. 利用代谢工程与适应性进化构建鸟氨酸高产菌株[D]. 广州:中山大学博士学位论文, 2012 Jiang LY. Combining metabolic engineering and adaptive evolution to construct high-production strains of L-ornithine in C. glutamicum[D]. Guangzhou:Doctoral Dissertation of Sun Yat-sen University, 2012(in Chinese)
    [18] Seong W, Han GH, Lim HS, Baek JI, Kim SJ, Kim D, Kim SK, Lee H, Kim H, Lee SG, et al. Adaptive laboratory evolution of Escherichia coli lacking cellular byproduct formation for enhanced acetate utilization through compensatory ATP consumption[J]. Metabolic Engineering, 2020, 62:249-259
    [19] Godara A, Kao KC. Adaptive laboratory evolution for growth coupled microbial production[J]. World Journal of Microbiology and Biotechnology, 2020, 36(11):175
    [20] Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO. In silico design and adaptive evolution of Escherichia coli for production of lactic acid[J]. Biotechnology and Bioengineering, 2005, 91(5):643-648
    [21] Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA. Methanol-essential growth of Escherichia coli[J]. Nature Communications, 2018, 9:1508
    [22] Liu KY, Fang H, Cui FJ, Nyabako BA, Tao TL, Zan XY, Chen HY, Sun WJ. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology, 2020, 104(14):6363-6373
    [23] Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346(6205):75-78
    [24] Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metabolic Engineering, 2014, 21:26-33
    [25] Tuyishime P, Wang Y, Fan LW, Zhang QQ, Li QG, Zheng P, Sun JB, Ma YH. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metabolic Engineering, 2018, 49:220-231
    [26] Jang S, Kim M, Hwang J, Jung GY. Tools and systems for evolutionary engineering of biomolecules and microorganisms[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(9/10):1313-1326
    [27] Ji XJ, Huang H, Ouyang PK. Microbial 2,3-butanediol production:a state-of-the-art review[J]. Biotechnology Advances, 2011, 29(3):351-364
    [28] Plácido J, Capareda S. Conversion of residues and by-products from the biodiesel industry into value-added products[J]. Bioresources and Bioprocessing, 2016, 3(1):23
    [29] Ho PW, Swinnen S, Duitama J, Nevoigt E. The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives[J]. Biotechnology for Biofuels, 2017, 10(1):10
    [30] Klimacek M, Kirl E, Krahulec S, Longus K, Novy V, Nidetzky B. Stepwise metabolic adaption from pure metabolization to balanced anaerobic growth on xylose explored for recombinant Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2014, 13(1):37
    [31] Saini P, Beniwal A, Kokkiligadda A, Vij S. Evolutionary adaptation of Kluyveromyces marxianus strain for efficient conversion of whey lactose to bioethanol[J]. Process Biochemistry, 2017, 62:69-79
    [32] Zhang B, Li N, Wang ZW, Tang YJ, Chen T, Zhao XM. Inverse metabolic engineering of Bacillus subtilis for xylose utilization based on adaptive evolution and whole-genome sequencing[J]. Applied Microbiology and Biotechnology, 2015, 99(2):885-896
    [33] Rajaraman E, Agarwal A, Crigler J, Seipelt-Thiemann R, Altman E, Eiteman MA. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate[J]. Applied Microbiology and Biotechnology, 2016, 100(17):7777-7785
    [34] González-Villanueva M, Galaiya H, Staniland P, Staniland J, Savill I, Wong TS, Tee KL. Adaptive laboratory evolution of Cupriavidus necator H16 for carbon co-utilization with glycerol[J]. International Journal of Molecular Sciences, 2019, 20(22):5737
    [35] Wang Y, Fan LW, Tuyishime P, Liu J, Zhang K, Gao N, Zhang ZH, Ni XM, Feng JH, Yuan QQ, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum[J]. Communications Biology, 2020, 3:217
    [36] Promdonkoy P, Mhuantong W, Champreda V, Tanapongpipat S, Runguphan W. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering[J]. Journal of Industrial Microbiology and Biotechnology, 2020, 47(6/7):497-510
    [37] Sarkar P, Mukherjee M, Goswami G, Das D. Adaptive laboratory evolution induced novel mutations in Zymomonas mobilis ATCC ZW658:a potential platform for co-utilization of glucose and xylose[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(3):329-341
    [38] Millán C, Peña C, Flores C, Espín G, Galindo E, Castillo T. Improving glucose and xylose assimilation in Azotobacter vinelandii by adaptive laboratory evolution[J]. World Journal of Microbiology and Biotechnology, 2020, 36(3):1-11
    [39] Kim DH, Lee WH. Development of Pichia stipitis co-fermenting cellobiose and xylose through adaptive evolution[J]. Microbiology and Biotechnology Letters, 2019, 47(4):565-573
    [40] Cordova LT, Lu J, Cipolla RM, Sandoval NR, Long CP, Antoniewicz MR. Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by 13C metabolic flux analysis and whole genome sequencing[J]. Metabolic Engineering, 2016, 37:63-71
    [41] Sandberg TE, Lloyd CJ, Palsson BO, Feist AM. Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies[J]. Applied and Environmental Microbiology, 2017. DOI:10.1128/aem.00410-17
    [42] Pereira R, Wei YJ, Mohamed E, Radi M, Malina C, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2019, 56:130-141
    [43] Mundhada H, Seoane JM, Schneider K, Koza A, Christensen HB, Klein T, Phaneuf PV, Herrgard M, Feist AM, Nielsen AT. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution[J]. Metabolic Engineering, 2017, 39:141-150
    [44] Zhu LJ, Cai Z, Zhang YP, Li Y. Engineering stress tolerance of Escherichia coli by stress-induced mutagenesis (SIM)-based adaptive evolution[J]. Biotechnology Journal, 2014, 9(1):120-127
    [45] Royce LA, Yoon JM, Chen YX, Rickenbach E, Shanks JV, Jarboe LR. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity[J]. Metabolic Engineering, 2015, 29:180-188
    [46] 王世珍, 严正平, 邱隆辉, 方柏山. 发酵粗甘油产乳酸的戊糖乳杆菌代谢进化[J]. 化工学报, 2015, 66(8):3195-3203 Wang SZ, Yan ZP, Qiu LH, Fang BS. Metabolic evolution of Lactobacillus pentosus for lactic acid production from raw glycerol[J]. CIESC Journal, 2015, 66(8):3195-3203(in Chinese)
    [47] Elbakush AE, Güven D. Evaluation of ethanol tolerance in relation to intracellular storage compounds of Saccharomyces cerevisiae using FT-IR spectroscopy[J]. Process Biochemistry, 2021, 101:266-273
    [48] Luan GD, Cai Z, Gong FY, Dong HJ, Lin Z, Zhang YP, Li Y. Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system[J]. Protein & Cell, 2013, 4(11):854-862
    [49] 王光路, 周忆菲, 张帆, 王梦园, 马科, 叶建斌, 朱年青, 钟桂芳, 杨雪鹏. 可控高突变率枯草芽孢杆菌工程菌株的构建及应用[J]. 微生物学通报, 2021, 48(5):1450-1460 Wang GL, Zhou YF, Zhang F, Wang MY, Ma K, Ye JB, Zhu NQ, Zhong GF, Yang XP. Developing controllable hypermutable Bacillus subtilis cells through manipulating their methyl-directed mismatch repair system[J]. Microbiology China, 2021, 48(5):1450-1460(in Chinese)
    [50] 王光路, 杨琳琳, 张志平, 王跃, 张静涛. 一种人工控制枯草芽孢杆菌自发突变率的遗传操作方法及其应用:中国, CN108865963A[P]. 2018-11-23 Wang GL, Yang LL, Zhang ZP, Wang Y, Zhang JT. A genetic manipulation method for artificially controlling spontaneous mutation rate of Bacillus subtilis and its application:China, CN108865963A[P]. 2018-11-23(in Chinese)
    [51] Asakura Y, Kojima H, Kobayashi I. Evolutionary genome engineering using a restriction-modification system[J]. Nucleic Acids Research, 2011, 39(20):9034-9046
    [52] 王晓璐, 王钰, 刘娇, 郑平, 路福平. 利用定向进化提高基因工程大肠杆菌的甲醇利用能力[J]. 生物技术通报, 2017, 33(9):101-109 Wang XL, Wang Y, Liu J, Zheng P, Lu FP. Enhanced methanol utilization in genetically engineered Escherichia coli by directed evolution[J]. Biotechnology Bulletin, 2017, 33(9):101-109(in Chinese)
    [53] Warner JR, Patnaik R, Gill RT. Genomics enabled approaches in strain engineering[J]. Current Opinion in Microbiology, 2009, 12(3):223-230
    [54] Peano C, Damiano F, Forcato M, Pietrelli A, Palumbo C, Corti G, Siculella L, Fuligni F, Tagliazucchi GM, De Benedetto GE, et al. Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering[J]. Metabolic Engineering, 2014, 26:1-16
    [55] Horinouchi T, Sakai A, Kotani H, Tanabe K, Furusawa C. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies[J]. Journal of Biotechnology, 2017, 255:47-56
    [56] Wang GL, Shi T, Chen T, Wang XY, Wang YC, Liu DY, Guo JX, Fu J, Feng LL, Wang ZW, et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis[J]. Metabolic Engineering, 2018, 48:138-149
    [57] Mohamed ET, Werner AZ, Salvachúa D, Singer CA, Szostkiewicz K, Rafael Jiménez-Díaz M, Eng T, Radi MS, Simmons BA, Mukhopadhyay A, et al. Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance[J]. Metabolic Engineering Communications, 2020, 11:e00143
    [58] Srivastava V, Amanna R, Rowden SJL, Sengupta S, Madhu S, Howe CJ, Wangikar PP. Adaptive laboratory evolution of the fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for improved solvent tolerance[J]. Journal of Bioscience and Bioengineering, 2021, 131(5):491-500
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Guanglu, WANG Mengyuan, LIU Lanxi, MA Ke, YANG Xuepeng. Progress of adaptive laboratory evolution for industrial strain breeding[J]. Microbiology China, 2022, 49(1): 306-322

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 18,2021
  • Adopted:August 06,2021
  • Online: December 30,2021
Article QR Code