Research progress and prospects of Aspergillus oryzae heterologous protein expression system
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [70]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Aspergillus oryzae as an important industrial microorganism, in heterologous protein expression has been widely used. Limited by the modification and secretion process of the expressed protein, the gene donors currently used in actual production are mainly limited to other fungi, especially filamentous fungi. When exogenous genes were derived from plants, insects and mammals, Aspergillus oryzae produced heterologous protein yield and biological activity is often not satisfactory. This paper reviews the research progress of Aspergillus oryzae as a host for expressing heterologous proteins, including its existing genetic manipulation methods and the application and exploration of heterologous expression. In addition, the application prospects and development directions of Aspergillus oryzae expressing heterologous proteins are prospected.

    Reference
    [1] Kitamoto K. Cell biology of the Koji mold Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(6):863-869
    [2] Sallam SMA, Abdelmalek MLR, Kholif AE, Zahran SM, Ahmed MH, Zeweil HS, Attia MFA, Matloup OH, Olafadehan OA. The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows[J]. Animal Biotechnology, 2020, 31(6):491-497
    [3] Dawood MAO, Eweedah NM, Moustafa Moustafa E, Shahin MG. Effects of feeding regimen of dietary Aspergillus oryzae on the growth performance, intestinal morphometry and blood profile of Nile tilapia (Oreochromis niloticus)[J]. Aquaculture Nutrition, 2019, 25(5):1063-1072
    [4] Dawood MAO, Eweedah NM, Moustafa EM, Farahat EM. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge[J]. Aquaculture, 2020, 520:734669
    [5] Ntana F, Mortensen UH, Sarazin C, Figge R. Aspergillus:a powerful protein production platform[J]. Catalysts, 2020, 10(9):1064
    [6] Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, ARIMA T, Akita O, Kashiwagi Y, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071):1157-1161
    [7] Jin FJ, Hu S, Wang BT, Jin L. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae[J]. Frontiers in Microbiology, 2021, 12:644404. DOI:10.3389/fmicb.2021.644404
    [8] Todokoro T, Bando H, Kotaka A, Tsutsumi H, Hata Y, Ishida H. Identification of a novel pyrithiamine resistance marker gene thiI for genome co-editing in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2020, 130(3):227-232
    [9] Kubodera T, Yamashita N, Nishimura A. Pyrithiamine resistance gene (ptrA) of Aspergillus oryzae:cloning, characterization and application as a dominant selectable marker for transformation[J]. Bioscience, Biotechnology, and Biochemistry, 2000, 64(7):1416-1421
    [10] Suzuki S, Tada S, Fukuoka M, Taketani H, Tsukakoshi Y, Matsushita M, Oda K, Kusumoto KI, Kashiwagi Y, Sugiyama M. A novel transformation system using a bleomycin resistance marker with chemosensitizers for Aspergillus oryzae[J]. Biochemical and Biophysical Research Communications, 2009, 383(1):42-47
    [11] Li T, Li YP. Construction of transformation system of Aspergillus oryzae H4 and heterologous expression of lipase[J]. Journal of Nanchang University:Natural Science, 2019, 43(3):246-250,256(in Chinese)李童, 李燕萍. 米曲霉(Aspergillus oryzae)黄酒小曲4转化体系的构建及脂肪酶的异源表达[J]. 南昌大学学报:理科版, 2019, 43(3):246-250,256
    [12] Gomi K, Iimura Y, Hara S. Integrative transformation of Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB gene[J]. Agricultural and Biological Chemistry, 1987, 51(9):2549-2555
    [13] Ruiter-Jacobs YMJT, Broekhuijsen M, Unkles SE, Campbell EI, Kinghorn JR, Contreras R, Pouwels PH, Hondell CAMJJ. A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae[J]. Current Genetics, 1989, 16(3):159-163
    [14] Yamada O, Lee BR, Gomi K. Transformation System for Aspergillus oryzae with Double Auxotrophic Mutations, niaD and sC[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(8):1367-1369
    [15] Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Adenine auxotrophic mutants of Aspergillus oryzae:development of a novel transformation system with triple auxotrophic hosts[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(3):656-662
    [16] Jin FJ, Maruyama JI, Juvvadi PR, Arioka M, Kitamoto K. Development of a novel quadruple auxotrophic host transformation system by argB gene disruption using adeA gene and exploiting adenine auxotrophy in Aspergillus oryzae[J]. FEMS Microbiology Letters, 2004, 239(1):79-85
    [17] Gomi K, Kitamoto K, Kumagai C. Transformation of the industrial strain of Aspergillus oryzae with the homologous amdS gene as a dominant selectable marker[J]. Journal of Fermentation and Bioengineering, 1992, 74(6):389-391
    [18] Elrod SL, Jones A, Berka RM, Cherry JR. Cloning of the Aspergillus oryzae 5-aminolevulinate synthase gene and its use as a selectable marker[J]. Current Genetics, 2000, 38(5):291-298
    [19] Sun YL, Niu YL, Huang H, He B, Ma L, Tu YY, Tran VT, Zeng B, Hu ZH. Mevalonate diphosphate decarboxylase MVD/Erg19 is required for ergosterol biosynthesis, growth, sporulation and stress tolerance in Aspergillus oryzae[J]. Frontiers in Microbiology, 2019, 10:1074
    [20] Sun YL, Niu YL, He B, Ma L, Li GH, Tran VT, Zeng B, Hu ZH. A dual selection marker transformation system using Agrobacterium tumefaciens for the industrial Aspergillus oryzae 3.042[J]. Journal of Microbiology and Biotechnology, 2019, 29(2):230-234
    [21] Maruyama JI, Kitamoto K. Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (ΔligD) in Aspergillus oryzae[J]. Biotechnology Letters, 2008, 30(10):1811-1817
    [22] Zhang SL, Ban A, Ebara N, Mizutani O, Tanaka M, Shintani T, Gomi K. Self-excising Cre/mutant lox marker recycling system for multiple gene integrations and consecutive gene deletions in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2017, 123(4):403-411
    [23] Sugui JA, Chang YC, Kwon-Chung KJ. Agrobacterium tumefaciens-mediated transformation of Aspergillus fumigatus:an efficient tool for insertional mutagenesis and targeted gene disruption[J]. Applied and Environmental Microbiology, 2005, 71(4):1798-1802
    [24] Wang DY, He D, Li GQ, Gao S, Lv H, Shan QS, Wang L. An efficient tool for random insertional mutagenesis:Agrobacterium tumefaciens-mediated transformation of the filamentous fungus Aspergillus terreus[J]. Journal of Microbiological Methods, 2014, 98:114-118
    [25] Han GM, Shao Q, Li CP, Zhao K, Jiang L, Fan J, Jiang HY, Tao F. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus[J]. Journal of Microbiology, 2018, 56(5):356-364
    [26] Zhang H, Yan JN, Zhang H, Liu TQ, Xu Y, Zhang YY, Li J. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in Aspergillus niger[J]. FEMS Microbiology Letters, 2018, 365(15):fny154
    [27] Hu, Huang, Sun, Niu, Xu, Liu, Zhang, Jiang, Li, Zeng. Effects on gene transcription profile and fatty acid composition by genetic modification of mevalonate diphosphate decarboxylase MVD/Erg19 in Aspergillus oryzae[J]. Microorganisms, 2019, 7(9):342
    [28] Chen XA, Ishida N, Todaka N, Nakamura R, Maruyama JI, Takahashi H, Kitamoto K. Promotion of efficient saccharification of crystalline cellulose by Aspergillus fumigatus Swo1[J]. Applied and Environmental Microbiology, 2010, 76(8):2556-2561
    [29] Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. Purification and characterization of termite endogenous β-1,4-endoglucanases produced in Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2010, 74(8):1680-1686
    [30] Todaka N, Lopez CM, Inoue T, Saita K, Maruyama JI, Arioka M, Kitamoto K, Kudo T, Moriya S. Heterologous expression and characterization of an endoglucanase from a symbiotic protist of the lower termite, Reticulitermes speratus[J]. Applied Biochemistry and Biotechnology, 2010, 160(4):1168-1178
    [31] Uchima CA, Tokuda G, Watanabe H, Kitamoto K, Arioka M. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 89(6):1761-1771
    [32] Otagiri M, Lopez CM, Kitamoto K, Arioka M, Kudo T, Moriya S. Heterologous expression and characterization of a glycoside hydrolase family 45 endo-β-1, 4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus[J]. Applied Biochemistry and Biotechnology, 2013, 169(6):1910-1918
    [33] Nakajima KI, Asakura T, Maruyama JI, Morita Y, Oike H, Shimizu-Ibuka A, Misaka T, Sorimachi H, Arai S, Kitamoto K, et al. Extracellular production of neoculin, a sweet-tasting heterodimeric protein with taste-modifying activity, by Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2006, 72(5):3716-3723
    [34] Jin FJ, Katayama T, Maruyama JI, Kitamoto K. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2016, 100(21):9163-9174
    [35] Hoang HD, Maruyama JI, Kitamoto K. Modulating endoplasmic Reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae[J]. Applied and Environmental Microbiology, 2015, 81(2):533-543
    [36] Zhu L, Maruyama JI, Kitamoto K. Further enhanced production of heterologous proteins by double-gene disruption (ΔAosedD ΔAovps10) in a hyper-producing mutant of Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6347-6357
    [37] Yoon J, Maruyama JI, Kitamoto K. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins[J]. Applied Microbiology and Biotechnology, 2011, 89(3):747-759
    [38] Yoon J, Aishan T, Maruyama JI, Kitamoto K. Enhanced production and secresis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(1):180-183
    [71] Ichikawa K, Shiono Y, Shintani T, Watanabe A, Kanzaki H, Gomi K, Koseki T. Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter[J]. Journal of Bioscience and Bioengineering, 2020, 129(2):150-154
    [72] Hamann T, Lange L. Discovery, cloning and heterologous expression of secreted potato proteins reveal erroneous pre-mRNA splicing in Aspergillus oryzae[J]. Journal of Biotechnology, 2006, 126(3):265-276
    [73] Tanaka M, Tokuoka M, Gomi K. Effects of codon optimization on the mRNA levels of heterologous genes in filamentous fungi[J]. Applied Microbiology and Biotechnology, 2014, 98(9):3859-3867
    [74] Iriarte A, Sanguinetti M, Fernández-Calero T, Naya H, Ramón A, Musto H. Translational selection on codon usage in the genus Aspergillus[J]. Gene, 2012, 506(1):98-105
    [75] Koda A, Bogaki T, Minetoki T, Hirotsune M. 5' untranslated region of the Hsp12 gene contributes to efficient translation in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2006, 70(3):333-336
    [76] Koda A, Minetoki T, Ozeki K, Hirotsune M. Translation efficiency mediated by the 5' untranslated region greatly affects protein production in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2004, 66(3):291-296
    [77] Tamayo-Ramos JA, Barends S, De Lange D, De Jel A, Verhaert R, De Graaff L. Enhanced production of Aspergillus niger laccase-like multicopper oxidases through mRNA optimization of the glucoamylase expression system[J]. Biotechnology and Bioengineering, 2013, 110(2):543-551
    [78] Ogino C, Matsuda T, Okazaki F, Tanaka T, Kondo A. The effect of combining signal sequences with the N28 fragment on GFP production in Aspergillus oryzae[J]. Process Biochemistry, 2014, 49(7):1078-1083
    [79] Li QS, Higuchi Y, Tanabe K, Katakura Y, Takegawa K. Secretory production of N-glycan-deleted glycoprotein in Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2020, 129(5):573-580
    [80] Kuratsu M, Taura A, Shoji JY, Kikuchi S, Arioka M, Kitamoto K. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae[J]. Fungal Genetics and Biology, 2007, 44(12):1310-1323
    [81] Yoon J, Kikuma T, Maruyama JI, Kitamoto K. Enhanced production of bovine chymosin by autophagy deficiency in the filamentous fungus Aspergillus oryzae[J]. PLoS One, 2013, 8(4):e62512
    [82] Zhu L, Nemoto T, Yoon J, Maruyama JI, Kitamoto K. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae[J]. The Journal of General and Applied Microbiology, 2012, 58(?):199-209
    [83] Kitamoto N, Ono N, Yoshino-Yasuda S. Construction of quintuple protease and double amylase gene deletant for heterologous protein production in Aspergillus oryzae KBN616[J]. Food Sc?ence and Technology Research, 2015, 21(3):297-307
    [84] Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture condi?ions[J]. Applied and Environmental Microbiology, 2006, 72(5):3448-3457 its magnetic immobilization[J]. BMC Biotechnology, 2017, 17(1):1-13
    [53] Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K. Heterologous production of a novel cyclic peptide compound, KK-1, in Aspergillus oryzae[J]. Frontiers in Microbiology, 2018, 9:690
    [54] Tamalampudi S, Talukder MMR, Hama S, Tanino T, Suzuki Y, Kondo A, Fukuda H. Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing lipase-encoding gene from Candida antarctica[J]. Applied Microbiology and Biotechnology, 2007, 75(2):387-395
    [55] Takaya T, Koda R, Adachi D, Nakashima K, Wada JP, Bogaki T, Ogino C, Kondo A. Highly efficient biodiesel production by a whole-cell biocatalyst employing a system with high lipase expression in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2011, 90(3):1171-1177
    [56] Dusková J, Dohnálek J, Skálová T, Østergaard LH, Fuglsang CC, Kolenko P, Stepánková A, Hasek J. Crystallization of carbohydrate oxidase from Microdochium nivale[J]. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2009, 65(Pt 6):638-640
    [57] Yaver DS, Overjero MD, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S. Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase lcc1[J]. Applied and Environmental Microbiology, 1999, 65(11):4943-4948
    [58] Tanaka M, Tokuoka M, Shintani T, Gomi K. Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2012, 96(5):1275-1282
    [59] Tokuoka M, Tanaka M, Ono K, Takagi S, Shintani T, Gomi K. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression[J]. Applied and Environmental Microbiology, 2008, 74(21):6538-6546
    [60] Maruyama JI, Ohnuma H, Yoshikawa A, Kadokura H, Nakajima H, Kitamoto K. Production and product quality assessment of human hepatitis B virus pre-S2 antigen in submerged and solid-state cultures of Aspergillus oryzae[J]. Journal of Bioscience and Bioengineering, 2000, 90(1):118-120
    [61] Jin C. Glycobiology in filamentous fungus[J]. Chinese Bulletin of Life Sciences, 2011, 23(6):541-554(in Chinese)金城. 丝状真菌糖生物学[J]. 生命科学, 2011, 23(6):541-554
    [62] Ishida H, Hata Y, Kawato A, Abe Y, Kashiwagi Y. Isolation of a novel promoter for efficient protein production in Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(9):1849-1857
    [63] Tamano K, Bruno KS, Karagiosis SA, Culley DE, Deng S, Collett JR, Umemura M, Koike H, Baker SE, Machida M. Increased production of fatty acids and triglycerides in Aspergillus oryzae by enhancing expressions of fatty acid synthesis-related genes[J]. Applied Microbiology and Biotechnology, 2013, 97(1):269-281
    [64] Hisada H, Sano M, Ishida H, Hata Y, Machida M. Identification of regulatory elements in the glucoamylase-encoding gene (glaB) promoter from Aspergillus oryzae[J]. Applied Microbiology and Biotechnology, 2013, 97(11):4951-4956
    [65] Ishida H, Hata Y, Kawato A, Abe Y. Improvement of the glaB promoter expressed in solid-state fermentation (SSF) of Aspergillus oryzae[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(5):1181-1187
    [66] Ishida H, Matsumura K, Hata Y, Kawato A, Suginami K, Abe Y, Imayasu S, Ichishima E. Establishment of a hyper-protein production system in submerged Aspergillus oryzae culture under tyrosinase-encoding gene (melO) promoter control[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2):131-137
    [67] Kurakake M, Hirotsu S, Shibata M. Relationship between pellet formation by Aspergillus oryzae strain KB and the production of β-fructofuranosidase with high transfructosylation activity[J]. Fungal Biology, 2020, 124(8):708-713
    [68] Heo JH, Ananin V, Park JS, Lee CR, Moon JO, Kwon O, Kang HA, Kim CH, Rhee SK. Impeller types and feeding modes influence the morphology and protein expression in the submerged culture of Aspergillus oryzae[J]. Biotechnology and Bioprocess Engineering, 2004, 9(3):184-190
    [69] Tsuboi H, Koda A, Toda T, Minetoki T, Hirotsune M, Machida M. Improvement of the Aspergillus oryzae enolase promoter (P-enoA) by the introduction of cis-element repeats[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(1):206-208
    [70] Kanemori Y, Gomi K, Kitamoto K, Kumagai C, Tamura G. Insertion analy
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Qicong, ZENG Bin. Research progress and prospects of Aspergillus oryzae heterologous protein expression system[J]. Microbiology China, 2021, 48(12): 4932-4942

Copy
Share
Article Metrics
  • Abstract:501
  • PDF: 1520
  • HTML: 3146
  • Cited by: 0
History
  • Received:March 21,2021
  • Adopted:April 26,2021
  • Online: December 03,2021
Article QR Code