Cloning, bioinformatics and expression analysis of AaCaMK gene on infection structure differentiation of Alternaria alternate, causal agent of pear black spot
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Calcium/calmodulin-dependent protein kinase (CaMK), an important downstream target protein of calmodulin in the calcium signaling pathway of eukaryotic cells, plays an important role in pathogen growth, stress response and pathogenicity. [Objective] Cloning, bioinformatics and expression analysis of AaCaMK gene on infection structure differentiation of Alternaria alternate, casual agent of pear black spot, for further clarifying the molecular regulatory role of the AaCaMK gene in the calcium signal pathway on the infection structure differentiation of A. alternata. [Methods] The AaCaMK gene was cloned from Alternaria alternata JT-03 by homologous cloning; The AaCaMK gene was analyzed by TMHMM, ProtScale, SOPMA and other software; Real-time quantitative PCR (RT-qPCR) was used to analysis of the expression of AaCaMK on infection structure differentiation of A. alternata. [Results] Three isotypes of calcium/calmodulin-dependent protein kinase designated AaCaMK1, AaCaMK2 and AaCaMK3 were identified in A. alternata with length of 1 212, 1 200 and 2 349 bp; The bioinformatics analysis revealed that these three CaMK all contain the PKC_like superfamily domains (PKC_Like Superfamily). The conserved kinase domains of both AaCaMK1 and AaCaMK2 belonged to the catalytic domain of CaMK ser/thr protein kinase (STKc_CaMK) while that of AaCaMK3 belonged to the catalytic domain of liver kinase B1 (LKB1) and calmodulin dependent protein kinase kinase (CaMKK)(STKc_LKB1_CaMKK); The homology analysis showed that the homology of AaCaMK1, AaCaMK2 and AaCaMK3 with Setosphaeria turcica CAK1, CAK2 and CAK3 were as high as 94.32%, 97.49% and 86.57%, respectively; RT-qPCR analysis showed that genes expression of AaCaMK1, AaCaMK2 and AaCaMK3 were all significantly upregulated during infection structure differentiation of A. alternata induced by hydrophobic and fruit wax coating surfaces (P<0.05), and fruit wax showed more significant stimulus effects. Among them, the expression of AaCaMK1 and AaCaMK2 during the appressorium formation period (6 h) were 1.51 and 3.05 folds, respectively, while AaCaMK3 had the highest expression in the infection hyphae formation period (8 h), which was 2.86 folds that of the control. Under fruit wax induction, the up-regulated expression of these three genes was significantly higher at the germ tube elongation stage (4 h) on fruit wax coating surfaces than the hydrophobic surface. [Conclusion] AaCaMK in calcium signaling pathway play an important regulatory role on the infection structure differentiation of A. alternata induced by hydrophobic and fruit wax.

    Reference
    [1] Yang SX, Zhang HJ. Cultivation techniques of high quality Zaosu pear[J]. Shaanxi Journal of Agricultural Sciences, 2005, 51(1):128-129(in Chinese)杨世选, 张宏建. 优质早酥梨栽培技术[J]. 陕西农业科学, 2005, 51(1):128-129
    [2] Prusky D. Assessment of latent infections as a basis for control of postharvest disease of mango[J]. Plant Disease, 1983, 67(7):816
    [3] Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the Citrus fungal pathogen Alternaria alternata[J]. Microbiology, 2014, 160(7):1453-1465
    [4] Li YC, Bi Y. Occurrence and infection of Alternaria rot of Pingguoli pear, Pyrus pyrifolia[J]. Acta Phytophylacica Sinica, 2006, 33(2):131-135(in Chinese)李永才, 毕阳. 苹果梨黑斑病的发生及侵染过程[J]. 植物保护学报, 2006, 33(2):131-135
    [5] Zhang WY, Bi Y. Postharvest Diseases Control of Fruit and Vegetables[M]. Beijing:Chinese Agriculture Press, 1996. (in Chinese)张维一, 毕阳. 果蔬采后病害与控制[M]. 北京:中国农业出版社, 1996
    [6] Huang Q. Understanding of the infection process of plant pathogens[J]. Science & Technology Information, 2008(27):656(in Chinese)黄强. 植物病原物侵染过程的认识[J]. 科技信息, 2008(27):656
    [7] Zhang HF. Functional analysis of G protein and MAPK signaling pathway associated genes in Magnaporthe oryzae[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2011(in Chinese)张海峰. 稻瘟病菌G蛋白及MAPK信号途径相关基因的功能分析[D]. 南京:南京农业大学博士学位论文, 2011
    [8] Lin CH, Yang SL, Wang NY, Chung KR. The FUS3 MAPK signaling pathway of the Citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes[J]. Fungal Genetics and Biology, 2010, 47(4):381-391
    [9] Kawasaki L, Sanchez O, Shiozaki K, Aguirre J. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans[J]. Molecular Microbiology, 2002, 45(4):1153-1163
    [10] Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes & Development, 1996, 10(21):2696-2706
    [11] Zhu WJ, Zhou M, Xiong ZY, Peng F, Wei W. The cAMP-PKA signaling pathway regulates pathogenicity, hyphal growth, appressorial formation, conidiation, and stress tolerance in Colletotrichum higginsianum[J]. Frontiers in Microbiology, 2017, 8:1416
    [12] Lee YH, Dean RA. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea[J]. The Plant Cell, 1993:693-700
    [13] Thines E, Eilbert F, Sterner O, Anke H. Signal transduction leading to appressorium formation in germinating conidia of Magnaporthe grisea:effects of second messengers diacylglycerols, ceramides and sphingomyelin[J]. FEMS Microbiology Letters, 1997, 156(1):91-94
    [14] Lee SC, Lee YH. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea[J]. Molecules and Cells, 1998, 8(6):698-704
    [15] Wang LA, Wang YC, Li CW, Zheng XB. Ca2+ signaling pathway involved in Magnaporthe grisea conidium germination and appressorium formation[J]. Mycosystema, 2003, 22(3):457-465(in Chinese)王立安, 王源超, 李昌文, 郑小波. Ca2+信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控[J]. 菌物系统, 2003, 22(3):457-465
    [16] Ma X, Shi J, Li Y, Han Y. Ascospore germination characteristics and the ultrastructure observation of fruit body of Pseudopeziza medicaginis[J]. Microbiology China, 2020, 47(11):3564-3576(in Chinese)马新, 史娟, 李杨, 韩宇. 苜蓿假盘菌子囊孢子萌发特性及子实体超微结构观察[J]. 微生物学通报, 2020, 47(11):3564-3576
    [17] Zhao JX, Chen Y, Wang LA. Ca2+ signaling pathway involved in Bipolaris maydis conidium germination and appressorium formation[J]. Microbiology China, 2005, 32(4):1-4(in Chinese)赵俊霞, 陈颖, 王立安. 钙信号途径参与小斑病菌致病过程的调控[J]. 微生物学通报, 2005, 32(4):1-4
    [18] Wang J, Xie YX, Pu JJ, Zhang X, Qi YX, Huang JS. Calcium/calmodulin-denpendent signaling for prepenetration development in Phyllosticta musarum[J]. Chinese Journal of Tropical Crops, 2008, 29(5):641-647(in Chinese)汪军, 谢艺贤, 蒲金基, 张欣, 漆艳香, 黄俊生. 香蕉黑星病菌侵入前发育的Ca2+/CaM依赖信号研究[J]. 热带作物学报, 2008, 29(5):641-647
    [19] Kumar R, Tamuli R. Calcium/calmodulin-dependent kinases are involved in growth, thermotolerance, oxidative stress survival, and fertility in Neurospora crassa[J]. Archives of Microbiology, 2014, 196(4):295-305
    [20] Hu F, Wang CL, Lu JP, Lin FC. Analysis on cloning and function of dependent CaMK gene of Magnaporthe oryzae[J]. Journal of Xinjiang Agricultural University, 2008, 31(4):20-24(in Chinese)胡峰, 王纯利, 卢建平, 林福呈. 稻瘟病菌病程相关基因CaMK的克隆与功能分析[J]. 新疆农业大学学报, 2008, 31(4):20-24
    [21] Joseph JD, Means AR. Identification and characterization of two Ca2+/CaM-dependent protein kinases required for normal nuclear division in Aspergillus nidulans[J]. Journal of Biological Chemistry, 2000, 275(49):38230-38238
    [22] Solomon PS, Rybak K, Trengove RD, Oliver RP. Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum[J]. Molecular Microbiology, 2006, 62(2):367-381
    [23] Kim YK, Li D, Kolattukudy PE. Induction of Ca2+-calmodulin signaling by hard-surface contact primes Colletotrichum gloeosporioides conidia to germinate and form appressoria[J]. Journal of Bacteriology, 1998, 180(19):5144-5150
    [24] Huang Y, Li YC, Li DM, Bi Y, Prusky DB, Dong YP, Wang TL, Zhang M, Zhang XM, Liu YX. Phospholipase C from Alternaria alternata is induced by physiochemical cues on the pear fruit surface that dictate infection structure differentiation and pathogenicity[J]. Frontiers in Microbiology, 2020, 11:1279
    [25] Ma ZB. Study on the clone and expression of Ca2+/CaM dependent protein kinase genes of Magnaporthe grisea[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2008(in Chinese)马志斌. 稻瘟病菌钙/钙调素依赖蛋白激酶基因的克隆及表达研究[D]. 石家庄:河北师范大学硕士学位论文, 2008
    [26] Marchler-Bauer A, Bo Y, Han LY, He J, Lanczycki CJ, Lu SN, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE:functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Research, 2017, 45(D1):D200-D203
    [27] Tang Y. Effect of cuticular wax of pingguoli pear from developing and storage on Alternaria alternata pre-penetration process[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2016(in Chinese)唐瑛. 发育及贮藏期苹果梨果皮蜡质对Alternaria alternata侵染的影响[D]. 兰州:甘肃农业大学硕士学位论文, 2016
    [28] Wu D, Zhao ZT, Li ZY, Yang Z, Tan YH, Shen S, Cao ZY, Dong JG, Tian FF, Hao ZM. Identification and expression pattern analysis of calcium/calmodulindependent protein kinases(CaMKs) gene family in Setosphaeria turcica[J]. Journal of Agricultural Biotechnology, 2015, 23(8):1020-1030(in Chinese)吴迪, 赵梓彤, 李志勇, 杨峥, 檀迎会, 申珅, 曹志艳, 董金皋, 田菲菲, 郝志敏. 玉米大斑病菌钙/钙调素依赖性蛋白激酶(CaMK)基因家族的鉴定与表达模式分析[J]. 农业生物技术学报, 2015, 23(8):1020-1030
    [29] Pausch MH, Kaim D, Kunisawa R, Admon A, Thorner J. Multiple Ca2+/calmodulin-dependent protein kinase genes in a unicellular eukaryote[J]. The EMBO Journal, 1991, 10(6):1511-1522
    [30] Jiao M, Yu D, Tan CL, Guo J, Lan DY, Han ES, Qi T, Voegele RT, Kang ZS, Guo J. Basidiomycete-specific PsCaMKL1 encoding a CaMK-like protein kinase is required for full virulence of Puccinia striiformis f. sp. tritici[J]. Environmental Microbiology, 2017, 19(10):4177-4189
    [31] Flaishman MA, Hwang CS, Kolattukudy PE. Involvement of protein phosphorylation in the induction of appressorium formation in Colletotrichum gloeosporioides by its host surface wax and ethylene[J]. Physiological and Molecular Plant Pathology, 1995, 47(2):103-117
    [32] Qin J, Huang CM, He FX, Zhu XG, Zhang Y, Kang ZS, Guo J. Function of a calcium-dependent protein kinase gene PsCaMK in Puccinia striiformis f. sp. tritici[J]. Acta Microbiologica Sinica, 2014, 54(11):1296-1303(in Chinese)秦娟, 黄传明, 何付新, 朱晓果, 张阳, 康振生, 郭军. 小麦条锈菌钙调素依赖蛋白激酶基因PsCaMK的功能[J]. 微生物学报, 2014, 54(11):1296-1303
    [33] Tonukari NJ, Scott-Craig JS, Walton JD. The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize[J]. The Plant Cell, 2000, 12(2):237
    [34] Ospina-Giraldo MD, Mullins E, Kang S. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis[J]. Current Genetics, 2003, 44(1):49-57
    [35] Zhen ZY, Zhang GS, Yang L, Ma N, Li Q, Ma YX, Niu XM, Zhang KQ, Yang JK. Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora[J]. Applied Microbiology and Biotechnology, 2019, 103(2):819-832
    [36] Gu Y. Cloning and functional analysis of CMK, PLA2 and PLC genes in Magnaporthe oryzae involving in Ca2+ signaling pathway[D]. Hangzhou:Master's Thesis of Zhejiang University, 2008(in Chinese)顾轶. 稻瘟病菌Ca2+信号途径相关基因CMK、PLA2以及PLC的克隆和功能分析[D]. 杭州:浙江大学硕士学位论文, 2008
    [37] Dong YX, Xing JH, Jia J, Weng QY, Hao ZM, Dong JG. Cloning and pharmaceutical analysis of CaMK gene of Botrytis cinerea[J]. Frontiers of Agriculture in China, 2011, 5(3):299-304
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIANG Qianqian, MAO Renyan, LI Yongcai, BI Yang, LIU Yongxiang, HUANG Yi, ZHANG Miao, WANG Tiaolan. Cloning, bioinformatics and expression analysis of AaCaMK gene on infection structure differentiation of Alternaria alternate, causal agent of pear black spot[J]. Microbiology China, 2021, 48(12): 4664-4676

Copy
Share
Article Metrics
  • Abstract:450
  • PDF: 1043
  • HTML: 1441
  • Cited by: 0
History
  • Received:April 12,2021
  • Adopted:May 11,2021
  • Online: December 03,2021
Article QR Code