Proteome analysis and heterologous cargo delivery of Vibrio natriegens outer membrane vesicles
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [66]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] The fast-growing Gram-negative bacterium Vibrio natriegens is a burgeoning tool in biotechnology. Previous research has mainly focused on developing tools for in vitro and in vivo recombinant protein production using V. natriegens. However, many physiological activities that support fast growth and protein production remain largely uncharacterized. Ubiquitously produced by bacteria, outer membrane vesicles (OMVs) not only carry out important functions but also can serve as a useful delivery tool for vaccine and therapeutics development. [Objective] Characterize the proteomes of OMVs during exponential phase growth and to employ OMVs for heterologous protein delivery. [Methods] Using transmission electron microscopy, dynamic light scattering, and mass spectrometry, we characterized the morphology and size distribution of extracted OMVs and their protein composition. We used the superfolded green fluorescent protein (sfGFP) as cargo to determine OMVs protein carriers. [Results] OMVs of mid- and late-exponential phases cultures contain 288 and 317 proteins, respectively. These proteins belong to multiple functional groups including ABC transporters, flagella and two-component systems. By contrast, we identified 1 480 and 1 565 proteins in whole cell samples under these two conditions, respectively. We screened OMV proteins for candidate carriers and found an OmpA-family protein that we name OmpA24 could enrich the sfGFP as a protein-fusion cargo in OMVs. [Conclusion] We demonstrate for the first time that V. natriegens can produce OMVs throughout exponential growth and present the first proteomic snapshot of OMVs and related whole cell samples under different growth phases. OmpA24 protein is a promising carrier for delivery of heterologous protein-fusion cargo into OMVs. This study will facilitate the application of V. natriegens in protein expression and OMV-mediated secretion.

    Reference
    [1] Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli[J]. Protein Journal, 2013, 32(6):419-425
    [2] Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris[J]. FEMS Yeast Research, 2017, 17(7):fox068
    [3] Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology[J]. Nature Methods, 2016, 13(10):849-851
    [4] Lee HH, Ostrov N, Gold MA, Church GM. Recombineering in Vibrio natriegens[EB/OL]. bioRxiv, 2017
    [5] Lee HH, Ostrov N, Wong BG, Gold MA, Khalil AS, Church GM. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi[J]. Nature Microbiology, 2019, 4(7):1105-1113
    [6] Ellis GA, Tschirhart T, Spangler J, Walper SA, Medintz IL, Vora GJ. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production[J]. Marine Drugs, 2019, 17(12):679
    [7] Schleicher L, Muras V, Claussen B, Pfannstiel J, Blombach B, Dibrov P, Fritz G, Steuber J. Vibrio natriegens as host for expression of multisubunit membrane protein complexes[J]. Frontiers in Microbiology, 2018, 9:2537
    [8] Wiegand DJ, Lee HH, Ostrov N, Church GM. Cell-free protein expression using the rapidly growing bacterium Vibrio natriegens[J]. Journal of Visualized Experiments, 2019(145)
    [9] Hoff J, Daniel B, Stukenberg D, Thuronyi BW, Waldminghaus T, Fritz G. Vibrio natriegens:an ultrafast-growing marine bacterium as emerging synthetic biology chassis[J]. Environmental Microbiology, 2020, 22(10):4394-4408
    [10] Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron AD, Alston M, Stringer MF, Betts RP, Baranyi J, et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation[J]. Journal of Bacteriology, 2012, 194(3):686-701
    [11] Baranyi J, Roberts TA. Principles and application of predictive modeling of the effects of preservative factors on microorganisms, p342-358. In Lund BM, Baird-Parker TC, Gould GW (ed), the microbiological safety and quality of food[J]. Aspen, Gaithersburg, MD. 2000
    [12] Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in Gram-negative bacteria[J]. FEMS Microbiology Reviews, 2010, 34(4):476-495
    [13] Finkel SE. Long-term survival during stationary phase:evolution and the GASP phenotype[J]. Nature Reviews Microbiology, 2006, 4(2):113-120
    [14] Sezonov G, Joseleau-Petit D, D'Ari R. Escherichia coli physiology in Luria-Bertani broth[J]. Journal of Bacteriology, 2007, 189(23):8746-8749
    [15] Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in Gram-negative bacterial outer membrane vesicles[J]. Mass Spectrometry Reviews, 2008, 27(6):535-555
    [16] Kulkarni HM, Jagannadham MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria[J]. Microbiology (Reading), 2014, 160(Pt 10):2109-2121
    [17] Horstman AL, Kuehn MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles[J]. Journal of Biological Chemistry, 2000, 275(17):12489-12496
    [18] Dorward DW, Garon CF, Judd RC. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae[J]. Journal of Bacteriology, 1989, 171(5):2499-2505
    [19] Dorward DW, Garon CF. DNA is packaged within membrane-derived vesicles of Gram-negative but not Gram-positive bacteria[J]. Applied and Environmental Microbiology, 1990, 56(6):1960-1962
    [20] Sjöström AE, Sandblad L, Uhlin BE, Wai SN. Membrane vesicle-mediated release of bacterial RNA[J]. Scientific Reports, 2015, 5:15329
    [21] Elhenawy W, Debelyy MO, Feldman MF. Preferential packing of acidic glycosidases and proteases into Bacteroides outer membrane vesicles[J]. mBio, 2014, 5(2):e00909-e00914
    [22] Lappann M, Otto A, Becher D, Vogel U. Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis[J]. Journal of Bacteriology, 2013, 195(19):4425-4435
    [23] Baumgarten T, Sperling S, Seifert J, Von Bergen M, Steiniger F, Wick LY, Heipieper HJ. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation[J]. Applied and Environmental Microbiology, 2012, 78(17):6217-6224
    [24] Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057):422-425
    [25] Yoon H, Ansong C, Adkins JN, Heffron F. Discovery of Salmonella virulence factors translocated via outer membrane vesicles to murine macrophages[J]. Infection and Immunity, 2011, 79(6):2182-2192
    [26] Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1):81-94
    [27] Wang SH, Gao J, Wang ZJ. Outer membrane vesicles for vaccination and targeted drug delivery[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2019, 11(2):e1523
    [28] Kim JY, Doody AM, Chen DJ, Cremona GH, Shuler ML, Putnam D, DeLisa MP. Engineered bacterial outer membrane vesicles with enhanced functionality[J]. Journal of Molecular Biology, 2008, 380(1):51-66
    [29] Schroeder J, Aebischer T. Recombinant outer membrane vesicles to augment antigen-specific live vaccine responses[J]. Vaccine, 2009, 27(48):6748-6754
    [30] Daleke-Schermerhorn MH, Felix T, Soprova Z, Ten Hagen-Jongman CM, Vikström D, Majlessi L, Beskers J, Follmann F, De Punder K, Van Der Wel NN, et al. Decoration of outer membrane vesicles with multiple antigens by using an autotransporter approach[J]. Applied and Environmental Microbiology, 2014, 80(18):5854-5865
    [31] Liu JJ, Hsieh CL, Gelincik O, Devolder B, Sei S, Zhang S, Lipkin SM, Chang YF. Proteomic characterization of outer membrane vesicles from gut mucosa-derived Fusobacterium nucleatum[J]. Journal of Proteomics, 2019, 195:125-137
    [32] Kulkarni HM, Swamy CVB, Jagannadham MV. Molecular characterization and functional analysis of outer membrane vesicles from the Antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions[J]. Journal of Proteome Research, 2014, 13(3):1345-1358
    [33] Mullaney E, Brown PA, Smith SM, Botting CH, Yamaoka YY, Terres AM, Kelleher DP, Windle HJ. Proteomic and functional characterization of the outer membrane vesicles from the gastric pathogen Helicobacter pylori[J]. Proteomics Clinical Applications, 2009, 3(7):785-796
    [34] Jang KS, Sweredoski MJ, Graham RLJ, Hess S, Clemons WM Jr. Comprehensive proteomic profiling of outer membrane vesicles from Campylobacter jejuni[J]. Journal of Proteomics, 2014, 98:90-98
    [35] Sidhu VK, Vorhölter FJ, Niehaus K, Watt SA. Analysis of outer membrane vesicle associated proteins isolated from the plant pathogenic bacterium Xanthomonas campestris pv. campestris[J]. BMC Microbiology, 2008, 8:87
    [36] Kwon SO, Gho YS, Lee JC, Kim SI. Proteome analysis of outer membrane vesicles from a clinical Acinetobacter baumannii isolate[J]. FEMS Microbiology Letters, 2009, 297(2):150-156
    [37] Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, et al. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli[J]. Proteomics, 2007, 7(17):3143-3153
    [38] Donnarumma D, Maestri C, Giammarinaro PI, Capriotti L, Bartolini E, Veggi D, Petracca R, Scarselli M, Norais N. Native state organization of outer membrane porins unraveled by HDx-MS[J]. Journal of Proteome Research, 2018, 17(5):1794-1800
    [39] Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6):1547-1549
    [40] Messenger LJ, Zalkin H. Glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Purification and properties[J]. Journal of Biological Chemistry, 1979, 254(9):3382-3392
    [41] Jensen KF, Mygind B. Different oligomeric states are involved in the allosteric behavior of uracil phosphoribosyltransferase from Escherichia coli[J]. European Journal of Biochemistry, 1996, 240(3):637-645
    [42] Vos S, De Jersey J, Martin JL. Crystal structure of Escherichia coli xanthine phosphoribosyltransferase[J]. Biochemistry, 1997, 36(14):4125-4134
    [43] Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction[J]. Annual Review of Biochemistry, 2000, 69:183-215
    [44] Jones PM, George AM. The ABC transporter structure and mechanism:perspectives on recent research[J]. Cellular and Molecular Life Sciences, 2004, 61(6):682-699
    [45] Gerding MA, Ogata Y, Pecora ND, Niki H, De Boer PAJ. The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli[J]. Molecular Microbiology, 2007, 63(4):1008-1025
    [46] Confer AW, Ayalew S. The OmpA family of proteins:roles in bacterial pathogenesis and immunity[J]. Veterinary Microbiology, 2013, 163(3-4):207-222
    [47] Grizot S, Buchanan SK. Structure of the OmpA-like domain of RmpM from Neisseria meningitidis[J]. Molecular Microbiology, 2004, 51(4):1027-1037
    [48] Volokhina EB, Beckers F, Tommassen J, Bos MP. The beta-barrel outer membrane protein assembly complex of Neisseria meningitidis[J]. Journal of Bacteriology, 2009, 191(22):7074-7085
    [49] Bouveret E, Bénédetti H, Rigal A, Loret E, Lazdunski C. In vitro characterization of peptidoglycan-associated lipoprotein (PAL)-peptidoglycan and PAL-TolB interactions[J]. Journal of Bacteriology, 1999, 181(20):6306-6311
    [50] Park JS, Lee WC, Yeo KJ, Ryu KS, Kumarasiri M, Hesek D, Lee M, Mobashery S, Song JH, Kim SI, et al. Mechanism of anchoring of OmpA protein to the cell wall peptidoglycan of the Gram-negative bacterial outer membrane[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2012, 26(1):219-228
    [51] Pierson T, Matrakas D, Taylor YU, Manyam G, Morozov VN, Zhou WD, Van Hoek ML. Proteomic characterization and functional analysis of outer membrane vesicles of Francisella novicida suggests possible role in virulence and use as a vaccine[J]. Journal of Proteome Research, 2011, 10(3):954-967
    [52] Pérez-Cruz C, Carrión O, Delgado L, Martinez G, López-Iglesias C, Mercade E. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T:implications for DNA content[J]. Applied and Environmental Microbiology, 2013, 79(6):1874-1881
    [53] Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10):4414-4420
    [54] Turnbull L, Toyofuku M, Hynen AL, Kurosawa M, Pessi G, Petty NK, Osvath SR, Cárcamo-Oyarce G, Gloag ES, Shimoni R, et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms[J]. Nature Communications, 2016, 7:11220
    [55] Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions[J]. Nature Reviews Microbiology, 2015, 13(10):605-619
    [56] Schwechheimer C, Sullivan CJ, Kuehn MJ. Envelope control of outer membrane vesicle production in Gram-negative bacteria[J]. Biochemistry, 2013, 52(18):3031-3040
    [57] Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J]. Annual Review of Microbiology, 2010, 64:163-184
    [58] Van Der Pol L, Stork M, Van Der Ley P. Outer membrane vesicles as platform vaccine technology[J]. Biotechnology Journal, 2015, 10(11):1689-1706
    [59] McConnell MJ, Rumbo C, Bou G, Pachón J. Outer membrane vesicles as an acellular vaccine against Acinetobacter baumannii[J]. Vaccine, 2011, 29(34):5705-5710
    [60] Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, Rumbo M, Hozbor D. Outer membrane vesicles as acellular vaccine against pertussis[J]. Vaccine, 2008, 26(36):4639-4646
    [61] Nieves W, Petersen H, Judy BM, Blumentritt CA, Russell-Lodrigue K, Roy CJ, Torres AG, Morici LA. A Burkholderia pseudomallei outer membrane vesicle vaccine provides protection against lethal sepsis[J]. Clinical and Vaccine Immunology, 2014, 21(5):747-754
    [62] O'Ryan M, Stoddard J, Toneatto D, Wassil J, Dull PM. A multi-component meningococcal serogroup B vaccine (4CMenB):the clinical development program[J]. Drugs, 2014, 74(1):15-30
    [63] Peng LH, Wang MZ, Chu Y, Zhang L, Niu J, Shao HT, Yuan TJ, Jiang ZH, Gao JQ, Ning XH. Engineering bacterial outer membrane vesicles as transdermal nanoplatforms for photo-TRAIL-programmed therapy against melanoma[J]. Science Advances, 2020, 6(27):eaba2735
    [64] Gu TW, Wang MZ, Niu J, Chu Y, Guo KR, Peng LH. Outer membrane vesicles derived from E. coli as novel vehicles for transdermal and tumor targeting delivery[J]. Nanoscale, 2020, 12(36):18965-18977
    [65] Peng Y, Gao M, Liu YK, Qiu XH, Cheng XY, Yang XY, Chen FP, Wang EH. Bacterial outer membrane vesicles induce disseminated intravascular coagulation through the caspase-11-gasdermin D pathway[J]. Thrombosis Research, 2020, 196:159-166
    [66] Hu RJ, Lin H, Li J, Zhao YZ, Wang MM, Sun XQ, Min YN, Gao YP, Yang MM. Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in RAW264.7 macrophages[J]. BMC Microbiology, 2020, 20(1):268
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CUI Yang, DONG Tao. Proteome analysis and heterologous cargo delivery of Vibrio natriegens outer membrane vesicles[J]. Microbiology China, 2021, 48(12): 4564-4580

Copy
Share
Article Metrics
  • Abstract:779
  • PDF: 1297
  • HTML: 1419
  • Cited by: 0
History
  • Received:March 26,2021
  • Adopted:May 07,2021
  • Online: December 03,2021
Article QR Code