Degradation of diethylstilbestrol by Serratia sp. AXJ-M was optimized by Response Surface Methodology
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Environmental estrogens, major components in the new types of environmental pollutants, threaten the health of humans and animals by their adverse effect on the functions of the endocrine system. Microbial degradation is considered an efficient method in the removal of estrogenics and the bioremediation of polluted environments. [Objective] To improve diethylstilbestrol (DES) biodegradation efficiency, we studied the degradation characteristics of a DES-degrading bacterium Serratia sp. AXJ-M. [Methods] The degradation conditions of DES by Serratia sp. AXJ-M were optimized by performing the single factor test, Plackett-Burman test, steepest ascent hill climb test, and Box-Behnken test. [Results] Application of (NH4)2SO4, ZnCl2, and tryptone as inorganic nitrogen sources, additional metal ions, and added nutrients, respectively, significantly promoted the degradation of DES. The concentration of ammonium sulfate and DES and pH value were selected as the key parameters affecting the degradation of DES by performing the Plackett-Burman experiment. Box-Behnken experiment design and response surface methodology (RSM) analysis were adopted, the optimized conditions were (NH4)2SO4 1.48 g/L, ZnCl2 0.02 g/L, culture temperature 30℃, pH 7.19, DES 119.5 mg/L, and inoculation biomass 3%. The degradation rate of DES under these conditions reached 76.89% within 7 d, which was 17.38% higher than initial conditions. [Conclusion] Serratia sp. AXJ-M, a highly efficient DES degrading strain, can be used as an excellent microbial resource for bioremediation of the environment polluted by DES or other synthetic estrogens.

    Reference
    [1] Han B, Zhang M, Zhao DY. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles:column studies[J]. Environmental Pollution, 2017, 223:238-246
    [2] Zhang H, Shi JH, Liu XW, Zhan XM, Chen QC. Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China[J]. Water Research, 2014, 58:248-257
    [3] Isidori M, Bellotta M, Cangiano M, Parrella A. Estrogenic activity of pharmaceuticals in the aquatic environment[J]. Environment International, 2009, 35(5):826-829
    [4] Mitra MS, Philip BK. Diethylstilbestrol[A]//Encyclopedia of Toxicology[M]. Amsterdam:Elsevier, 2014:143-145
    [5] Herbst AL, Ulfelder H, Poskanzer DC, Longo LD. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women 1971[J]. American Journal of Obstetrics and Gynecology, 1999, 181(6):1574-1575
    [6] Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlan JA. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol[J]. Carcinogenesis, 2000, 21(7):1355-1363
    [7] Huang F, Ye SH, Gong ZM. The development of diethylstilbestrol[J]. China Animal Husbandry & Veterinary Medicine, 2007, 34(2):51-54(in Chinese)黄芬, 叶绍辉, 龚振明. 己烯雌酚的研究进展[J]. 中国畜牧兽医, 2007, 34(2):51-54
    [8] Giusti RM, Iwamoto K, Hatch EE. Diethylstilbestrol revisited:a review of the long-term health effects[J]. Annals of Internal Medicine, 1995, 122(10):778-788
    [9] Doherty LF, Bromer JG, Zhou YP, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland:An epigenetic mechanism linking endocrine disruptors to breast cancer[J]. Hormones and Cancer, 2010, 1(3):146-155
    [10] Zhang WW, Niu ZL, Liao CY, Chen LX. Isolation and characterization of Pseudomonas sp. strain capable of degrading diethylstilbestrol[J]. Applied Microbiology and Biotechnology, 2013, 97(9):4095-4104
    [11] Xu RF, Sun MX, Liu J, Wang H, Li X, Zhu XZ, Ling WT. Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp.[J]. Environmental Science, 2014, 35(8):3169-3174(in Chinese)徐冉芳, 孙敏霞, 刘娟, 汪泓, 李欣, 朱雪竹, 凌婉婷. 己烯雌酚降解菌株沙雷氏菌的分离鉴定及其降解特性[J]. 环境科学, 2014, 35(8):3169-3174
    [12] Hu KD, Deng WQ, Chen SP, Chai XD, Liu AP, Zhuo WJ, Liu SL. Degradation characteristics of diethylstilbestrol by Aspergillus oryzae M-4[J]. Food Science, 2016, 37(17):169-172(in Chinese)胡凯弟, 邓维琴, 陈树平, 柴先杜, 刘爱平, 卓文杰, 刘书亮. 米曲霉Aspergillus oryzae M-4降解己烯雌酚的特性研究[J]. 食品科学, 2016, 37(17):169-172
    [13] An XJ, Zhong B, Chen GT, An WJ, Xia X, Li HG, Lai FJ, Zhang QH. Evaluation of bioremediation and detoxification potentiality for papermaking black liquor by a new isolated thermophilic and alkali-tolerant Serratia sp. AXJ-M[J]. Journal of Hazardous Materials, 2021, 406:124285
    [14] Li F, Liang N, Sun JZ. Degradation characteristics of a novel aniline blue-discoloring bacterial strain MP-13[J]. Microbiology China, 2020, 47(1):43-53(in Chinese)李锋, 梁念, 孙建中. 一株新型苯胺蓝降解菌MP-13的代谢特征[J]. 微生物学通报, 2020, 47(1):43-53
    [15] Yan JL, Chen HX, Yang Y, Zhang K, Wang L, Xiong L, Geng H, Liu DL. Isolation and characterization of a highly efficient DEHP-degrading bacterium[J]. Microbiology China, 2014, 41(8):1532-1540(in Chinese)严佳丽, 陈湖星, 杨杨, 张凯, 王丽, 熊丽, 耿辉, 刘德立. 一株高效DEHP降解菌的分离、鉴定及其降解特性[J]. 微生物学通报, 2014, 41(8):1532-1540
    [16] Deng WQ, Li A, Peng X, Liu SS, Hu KD, Zhang MM, He L, Chen SJ, Han XF, Liu SL. Determination of diethylstilbestrol in microbial degradation systems by HPLC-UV[J]. Food & Machinery, 2016, 32(1):51-55(in Chinese)邓维琴, 李阿霜, 彭贤, 刘霜霜, 胡凯弟, 张梦梅, 何利, 陈姝娟, 韩新锋, 刘书亮. 高效液相色谱-紫外检测法测定微生物降解体系中己烯雌酚含量[J]. 食品与机械, 2016, 32(1):51-55
    [17] Sreedharan A, Ong ST. Combination of Plackett Burman and response surface methodology experimental design to optimize Malachite Green dye removal from aqueous environment[J]. Chemical Data Collections, 2020, 25:100317
    [18] Chang JS, Lin YC. Fed-batch bioreactor strategies for microbial decolorization of azo dye using a Pseudomonas luteola strain[J]. Biotechnology Progress, 2000, 16(6):979-985
    [19] Sun ZY. Screening and degradation characteristics of a heterotrophic nitrification-aerobic denitrification bacterium Cupriavidus sp. S1[D]. Taiyuan:Master's Thesis of Taiyuan University of Technology, 2017(in Chinese)孙智毅. 一株异养硝化-好氧反硝化Cupriavidus sp. S1的筛选及降解特性研究[D]. 太原:太原理工大学硕士学位论文, 2017
    [20] Tian QW, Ran M, Fang GG, Ding LB, Pan AX, Shen KZ, Deng YJ. ZnAl2O4/BiPO4 composites as a heterogeneous catalyst for photo-Fenton treatment of textile and pulping wastewater[J]. Separation and Purification Technology, 2020, 239:116574
    [21] Celik A, Demirbaş A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes[J]. Energy Sources, 2005, 27(12):1167-1177
    [22] Hou Y, Wang WY, Pei T, Niu MF, You XY, Lin JK, Zhang XG. Isolation, identification and characterization of clodinafop-propargyl degrading Sphingopyxis sp. WP68[J]. Microbiology China, 2019, 46(10):2529-2537(in Chinese)侯颖, 王维宇, 裴韬, 牛明福, 尤晓颜, 林靖坤, 张雪龚. 炔草酯降解菌Sphingopyxis sp. WP68的分离鉴定与降解特性[J]. 微生物学通报, 2019, 46(10):2529-2537
    [23] An XJ, Cheng Y, Huang MY, Sun YL, Wang HL, Chen X, Wang JM, Li DP, Li CY. Treating organic cyanide-containing groundwater by immobilization of a nitrile-degrading bacterium with a biofilm-forming bacterium using fluidized bed reactors[J]. Environmental Pollution, 2018, 237:908-916
    [24] Song JL, Gu JG, Zhai Y, Wu W, Wang HS, Ruan ZY, Shi YH, Yan YC. Biodegradation of nicosulfuron by a Talaromyces flavus LZM1[J]. Bioresource Technology, 2013, 140:243-248
    [25] Cycoń M, Wójcik M, Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil[J]. Chemosphere, 2009, 76(4):494-501
    [26] Zhu XZ, Wang WQ, Crowley DE, Sun K, Hao SP, Waigi MG, Gao YZ. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat[J]. Environmental Science and Pollution Research, 2017, 24(7):6648-6656
    [27] Zhang C, Jia L, Wang SH, Qu J, Li K, Xu LL, Shi YH, Yan YC. Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity[J]. Bioresource Technology, 2010, 101(10):3423-3429
    [28] Pandey AK, Chaudhary P, Singh SB, Arora A, Kumar K, Chaudhry S, Nain L. Deciphering the traits associated with PAH degradation by a novel Serratia marcesencs L-11 strain[J]. Journal of Environmental Science and Health, Part A, 2012, 47(5):755-765
    [29] Li MT, Hao LL, Sheng LX, Xu JB. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1[J]. Bioresource Technology, 2008, 99(15):6878-6884
    [30] Hu Q, Tang J, Lei D, Wu M, Sun Q, Zhang Q. Isolation and identification of a deltamethrin-degrading bacteria and optimization of its degradation conditions[J]. Microbiology China, 2020, 47(3):699-709(in Chinese)胡琼, 唐洁, 雷丹, 吴敏, 孙擎, 张庆. 一株溴氰菊酯降解菌的分离鉴定及其降解条件优化[J]. 微生物学通报, 2020, 47(3):699-709
    [31] Chen SH, Deng YY, Chang CQ, Lee J, Cheng YY, Cui ZN, Zhou JN, He F, Hu MY, Zhang LH. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19[J]. Scientific Reports, 2015, 5:8784
    [32] Xiao Y, Chen SH, Gao YQ, Hu W, Hu MY, Zhong GH. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway[J]. Applied Microbiology and Biotechnology, 2015, 99(6):2849-2859
    [33] Zhao HY, Geng YC, Chen L, Tao K, Hou TP. Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil[J]. Canadian Journal of Microbiology, 2013, 59(5):311-317
    [34] Chen SH, Lai KP, Li YN, Hu MY, Zhang YB, Zeng Y. Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-01[J]. Applied Microbiology and Biotechnology, 2011, 90(4):1471-1483
    [35] Shi SN. Cometabolic degradation of heterocyclic compounds by Arthrobacter sp. W1 and its application in coking wastewater treatment process[D]. Harbin:Doctoral Dissertation of Harbin Institute of Technology, 2014(in Chinese)时胜男. Arthrobacter sp. W1共代谢杂环芳烃及其强化处理焦化废水的研究[D]. 哈尔滨:哈尔滨工业大学博士学位论文, 2014
    [36] Ekpenyong M, Antai S, Asitok A, Ekpo B. Response surface modeling and optimization of major medium variables for glycolipopeptide production[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10:113-121
    [37] Ekpenyong MG, Antai SP, Asitok AD, Ekpo BO. Plackett-burman design and response surface optimization of medium trace nutrients for glycolipopeptide biosurfactant production[J]. Iranian Biomedical Journal, 2017, 21(4):249-260
    [38] Singh RS, Kaur N. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans[J]. Food Science and Biotechnology, 2019, 28(5):1507-1520
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

AN Weijuan, ZHONG Min, ZHANG Qinghua, ZOU Jinqi, KE Shufen, LUO Yongqi, ZHONG Chunyan, AN Xuejiao. Degradation of diethylstilbestrol by Serratia sp. AXJ-M was optimized by Response Surface Methodology[J]. Microbiology China, 2021, 48(11): 4006-4018

Copy
Share
Article Metrics
  • Abstract:355
  • PDF: 1116
  • HTML: 802
  • Cited by: 0
History
  • Received:January 22,2021
  • Adopted:March 29,2021
  • Online: November 11,2021
Article QR Code