Effects of potato root exudates and phenolic acids on inducing chemotaxis of Bacillus atrophiae isolate QHZ3
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [50]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Chemotaxis of microorganisms mediated by root exudates is an important prerequisite for root colonization and function of plant growth-promoting rhizobacteria (PGPR), and further understanding of this process is of great significance to understand the colonization mechanism of the strains. [Objective] To study the signal substances in root exudates of potato which can promote the colonization of PGPR QHZ3 in rhizosphere. [Methods] The some phenolic acids in potato root exudates were identified by high performance liquid chromatography (HPLC). the chemotaxis of potato root exudates and different phenolic acids to isolate QHZ3 were compared using the semi-solid plate method and capillary-like method. the effects of different phenolic acids on biofilm formation of QHZ3 were observed by crystal violet staining. [Results] Phenolic acids in potato root exudates mainly included fumaric acid, p-hydroxybenzoic acid, ferulic acid and cinnamic acid. The semi-solid plate method shows that both the root exudates of potato and the four phenolic acids mentioned above had chemotactic effects on strain QHZ3, and the chemotactic effect of fumaric acid was the strongest. capillary-like quantitative test showed that the chemotactic effect of phenolic acids on strain QHZ3 was different at different concentrations. The chemotactic effect of middle and high concentrations of fumaric acid (25—100 μmol/L) and low concentration of ferulic acid (10 μmol/L) on strain QHZ3 was the strongest. Crystal violet staining showed that 120—240 μg/ml potato root exudates, 50—75 μmol/L fumaric acid and 100 μmol/L p-hydroxybenzoic acid could significantly promote biofilm formation of QHZ3, while ferulic acid and cinnamic acid had no significant effect on biofilm formation. [Conclusion] Both root exudates and phenolic acids could mediate the chemotaxis of strain QHZ3 to form biofilm in potato rhizosphere, but the effects of four phenolic acids were different. The chemotaxis of fumaric acid and ferulic acid was significant, while fumaric acid and p-hydroxybenzoic acid had significant effects on the formation of biofilm.

    Reference
    [1] Gao YL, Xu J, Liu N, Zhou Q, Ding XH, Zhan JS, Cheng XY, Huang J, Lu YW, Yang YH. Current status and management strategies for potato insect pests and diseases in China[J]. Plant Protection, 2019, 45(5):106-111(in Chinese)高玉林, 徐进, 刘宁, 周倩, 丁新华, 詹家绥, 成新跃, 黄剑, 鲁宇文, 杨宇红. 我国马铃薯病虫害发生现状与防控策略[J]. 植物保护, 2019, 45(5):106-111
    [2] Dong L, Qiu HZ, Zhou YZ, Dong AJ, Chen LL, Wang YL, Wang C. Rapid detection and application of antagonistic bacterium QHZ11 against Rhizoctonia solani in potato by real-time fluorescence quantitative PCR[J]. Microbiology China, 2020, 47(12):4338-4348(in Chinese)董莉, 邱慧珍, 周洋子, 董爱菊, 陈兰兰, 王友玲, 王川. 马铃薯立枯丝核菌拮抗菌QHZ11的实时荧光定量PCR快速检测与应用[J]. 微生物学通报, 2020, 47(12):4338-4348
    [3] Li JT, Yang RW, Luo ZQ, Xu LL, Li KM. Analysis on occurrence of fungous disease of potato in northern Xinjiang Uygur Autonomous Region[J]. Chinese Potato, 2019, 33(3):165-169(in Chinese)李江涛, 杨茹薇, 罗正乾, 徐琳黎, 李克梅. 新疆维吾尔自治区北疆地区马铃薯真菌病害发生情况分析[J]. 中国马铃薯, 2019, 33(3):165-169
    [4] Cui LX, Wei LJ, Han XP, Yang CD, Xue L, Zhang JL. Field efficacy test of different pesticides against potato black scurf[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(5):815-819(in Chinese)崔凌霄, 魏立娟, 韩相鹏, 杨成德, 薛莉, 张俊莲. 不同药剂防治马铃薯黑痣病的田间药效试验[J]. 西北农业学报, 2019, 28(5):815-819
    [5] Liu BY, Hu J, Meng ML, Zhang XY, Shi LH. Molecular identification and biological characters of the pathogen causing black scurf disease in potato[J]. Acta Phytophylacica Sinica, 2011, 38(4):379-380(in Chinese)刘宝玉, 胡俊, 蒙美莲, 张笑宇, 石立航. 马铃薯黑痣病病原菌分子鉴定及其生物学特性[J]. 植物保护学报, 2011, 38(4):379-380
    [6] Guo CJ, Shen RQ, Zhang LR, Wang XG, Zhang SW, Xu BL. Effects on biological control against potato black scurf (Rhizoctonia solani) and rhizosphere soil micr-ecosystem of Trichoderma harzianum applied together with straw[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7):1447-1455(in Chinese)郭成瑾, 沈瑞清, 张丽荣, 王喜刚, 张树武, 徐秉良. 哈茨木霉协同秸秆对马铃薯黑痣病及根际土壤微生态的影响[J]. 核农学报, 2020, 34(7):1447-1455
    [7] Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1):10-15
    [8] Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria[J]. Annual Review of Microbiology, 2009, 63:541-556
    [9] Gray EJ, Smith DL. Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology and Biochemistry, 2004, 37(3):395-412
    [10] Liu ZP, Wang ZG, Xu WH, Chen WJ, Lü ZH, Wang CL, Shi YR. Screen, identification and analysis on the growth-promoting ability for the rice growth-promoting rhizobacteria[J]. Journal of Agricultural Resources and Environment, 2018, 35(2):119-125(in Chinese)刘泽平, 王志刚, 徐伟慧, 陈文晶, 吕智航, 王春龙, 史一然. 水稻根际促生菌的筛选鉴定及促生能力分析[J]. 农业资源与环境学报, 2018, 35(2):119-125
    [11] Lin W, Okon Y, Hardy RW. Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense[J]. Applied and Environmental Microbiology, 1983, 45(6):1775-1779
    [12] Xie YS. Screening of plant growth-promoting rhizobacteria and analysis of growth-promoting and biocontrol mechanism of its volatile organic compounds[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016(in Chinese)谢越盛. 植物有益细菌筛选及其挥发性化合物的防病促生机理分析[D]. 南京:南京农业大学硕士学位论文, 2016
    [13] Zhang PP. Effects of some plant growth-promoting rhizobacteria volatiles on Arabidopsis and antagonistic properties[D]. Taian:Master's Thesis of Shandong Agricultural University, 2013(in Chinese)张鹏鹏. 几株植物根际促生细菌释放的挥发性物质对拟南芥及病原菌的影响[D]. 泰安:山东农业大学硕士学位论文, 2013
    [14] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 2003, 255(2):571-586
    [15] Wang S. Plant growth promotion and control of plant disease with Bacillus spp. and lipopeptide[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2009(in Chinese)王帅. 芽孢杆菌及其脂肽类化合物防治植物病害和促进植物生长的研究[D]. 南京:南京农业大学博士学位论文, 2009
    [16] Borriss R. Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture[M]. Bacteria in Agrobiology:Plant Growth Responses, 2011
    [17] Yuan YJ, Hu J, Ling N, Qiu MH, Shen QR, Yang XM. Effects and mechanisms of application with different bio-organic fertilizers in controlling Fusarium wilt of cucumber[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2):372-379(in Chinese)袁玉娟, 胡江, 凌宁, 仇美华, 沈其荣, 杨兴明. 施用不同生物有机肥对连作黄瓜枯萎病防治效果及其机理初探[J]. 植物营养与肥料学报, 2014, 20(2):372-379
    [18] Ling N. The effects and mechanisms of bio-organic fertilizer on biological control of fusarium wilt of watermelon in Fusafium-infested soil[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2012(in Chinese)凌宁. 根际施用生物有机肥防控西瓜土传枯萎病效果及机理研究[D]. 南京:南京农业大学博士学位论文, 2012
    [19] He X, Hao WY, Yang XM, Shen QR, Huang QW. Effects of bioorganic fertilization on growth and controlling Fusarium-wilt disease of banana[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4):978-985(in Chinese)何欣, 郝文雅, 杨兴明, 沈其荣, 黄启为. 生物有机肥对香蕉植株生长和香蕉枯萎病防治的研究[J]. 植物营养与肥料学报, 2010, 16(4):978-985
    [20] Luo X, Feng HC, Xia LM, Zhang RF, Yu GH, Shen QR, Zhang N. Transcriptomic profiling of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to banana root exudates[J]. Journal of Nanjing Agricultural University, 2019, 42(1):102-110(in Chinese)罗兴, 冯海超, 夏丽明, 张瑞福, 余光辉, 沈其荣, 张楠. 根际促生解淀粉芽胞杆菌SQR9对香蕉根系分泌物响应的转录组分析[J]. 南京农业大学学报, 2019, 42(1):102-110
    [21] Fang ZY. The effects and mechanisms of Bacillus amyloliquefacien strain SQY162 on biological control of bacterial wilt of tomato[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016(in Chinese)房志颖. 解淀粉芽孢杆菌SQY162防控土传番茄青枯病效果及其机理研究[D]. 南京:南京农业大学硕士学位论文, 2016
    [22] Shen YF, E YY, Yang F, Zhang N, Huang QW, Shen QR. Effects of amino acids in root exudates of watermelon on the chemotactic reaction and root colonization of Paenibacillus polymyxa SQR-21[J]. Journal of Nanjing Agricultural University, 2017, 40(1):101-108(in Chinese)沈怡斐, 鄂垚瑶, 阳芳, 张楠, 黄启为, 沈其荣. 西瓜根系分泌物中氨基酸组分对多黏类芽孢杆菌SQR-21趋化性及根际定殖的影响[J]. 南京农业大学学报, 2017, 40(1):101-108
    [23] Ling N, Huang QW, Guo SW, Shen QR. Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2011, 341(1/2):485-493
    [24] Ling N, Raza W, Ma JH, Huang QW, Shen QR. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology, 2011, 47(6):374-379
    [25] Liu YP. Mechanism of rhizosphere colonization and induction of systemic resistance by Bacillus amyloliquefaciens[D]. Beijing:Post-Doctoral Work Report of Chinese Academy of Agricultural Sciences, 2019(in Chinese)刘云鹏. 根际促生解淀粉芽孢杆菌根际定殖和诱导植物系统抗性的机理研究[D]. 北京:中国农业科学院博士后研究工作报告, 2019
    [26] Zhang XL. Screening of rhizosphere efficient phosphate solubilizing bacteria and its mechanisms suitable for the rhizosphere[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2014(in Chinese)张小兰. 根际高效溶磷菌的筛选及其适应根际的机理研究[D]. 南京:南京农业大学硕士学位论文, 2014
    [27] Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2009, 42(5):669-678
    [28] Xu ZH. The molecular mechanisms of biofilm formation and cucumber root colonization of Bacillus amyloliquefaciens SQR9[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2014(in Chinese)徐志辉. 解淀粉芽孢杆菌SQR9生物膜形成和根际定殖分子机理研究[D]. 南京:南京农业大学博士学位论文, 2014
    [29] Li XL, Li YZ. Research advances in biological control of soil-borne disease[J]. Acta Prataculturae Sinica, 2015, 24(3):204-212(in Chinese)李兴龙, 李彦忠. 土传病害生物防治研究进展[J]. 草业学报, 2015, 24(3):204-212
    [30] Guan XM. Isolation of antagonistic bacterium strains against pathogen causing black scurf of potato and its acting mechanism[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2014(in Chinese)关小敏. 马铃薯黑痣病生防细菌的筛选及其生防作用机理研究[D]. 兰州:甘肃农业大学硕士学位论文, 2014
    [31] Qiu XL. Effects of bio-organic fertilizers on soil biological activities and the root growth, morphology and activities of potato[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2018(in Chinese)邱晓丽. 不同生物有机肥对土壤生物活性以及对马铃薯的生物效应的影响[D]. 兰州:甘肃农业大学硕士学位论文, 2018
    [32] Feng HC. Correlation of root exudates components and gene transcription of SQR9 and its effects on chemotaxis and biofilm formation[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2015(in Chinese)冯海超. 根系分泌物组分与SQR9基因转录的相关性分析及其趋化与成膜的影响[D]. 南京:南京农业大学硕士学位论文, 2015
    [33] Cui SQ. A study of the mechanisms of inhibitory effect of phenolic acids derived from rice straw on Staphylococcus aureus biofilm[D]. Shanghai:Master's Thesis of Shanghai University, 2019(in Chinese)崔收庆. 秸秆酚酸对金黄色葡萄球菌生物膜的影响[D]. 上海:上海大学硕士学位论文, 2019
    [34] Shen YF. Investigation of chemotaxis and transcriptional responses of Paenibacillus polymyxa SQR-21 in the rhizosphere of watermelon[D]. Nanjing:Master's Thesis of Nanjing Agricultural University, 2016(in Chinese)沈怡斐. 多粘类芽孢杆菌SQR-21在西瓜根际趋化及转录组学研究[D]. 南京:南京农业大学硕士学位论文, 2016
    [35] Park SY, Kim R, Ryu CM, Choi SK, Lee CH, Kim JG, Park SH. Citrinin, a mycotoxin from Penicillium citrinum, plays a role in inducing motility of Paenibacillus polymyxa[J]. FEMS Microbiology Ecology, 2008, 65(2):229-237
    [36] Cao QH, Liu YY, Sun YN, Wei HL, Xue HW, Gou HT. Effect of different culture conditions on the formation of biofilm of Listeria monocytogenes[J]. Chinese Veterinary Science, 2020, 50(12):1563-1571(in Chinese)曹启航, 刘圆园, 孙亚楠, 委慧玲, 薛惠文, 苟惠天. 不同培养条件对单核细胞增生李斯特菌生物被膜形成的影响[J]. 中国兽医科学, 2020, 50(12):1563-1571
    [37] Wu LK, Lin XM, Lin WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3):298-310(in Chinese)吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310
    [38] Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM. How plants communicate using the underground information superhighway[J]. Trends in Plant Science, 2004, 9(1):26-32
    [39] Zhang Y, Qin YX, Shang QM, Zhang YF, Li CH, Li PL. Characteristics of interaction between Bacillus Amyloliquefaciens L-S60 and cucumbers[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2):258-265(in Chinese)张莹, 秦宇轩, 尚庆茂, 张一凡, 李昌辉, 李平兰, 解淀粉芽孢杆菌L-S60与黄瓜互作特性研究[J]. 农业机械学报, 2019, 50(2):258-265
    [40] Wang RH, Zhang QF, Zhou BL, Lian H, Ma GS. Analysis on the interaction between root exudates and rhizosphere microbes[J]. Chinese Journal of Soil Science, 2007, 38(1):167-172(in Chinese)王茹华, 张启发, 周宝利, 廉华, 马光恕. 浅析植物根分泌物与根际微生物的相互作用关系[J]. 土壤通报, 2007, 38(1):167-172
    [41] Zhu LX, Zhang JE, Liu WG. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecology and Environmental Sciences, 2003, 12(1):102-105(in Chinese)朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1):102-105
    [42] Feng HC, Zhang N, Du WB, Zhang HH, Liu YP, Fu RX, Shao JH, Zhang GS, Shen QR, Zhang RF. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9[J]. Molecular Plant Microbe Interactions, 2018, 31(10):995-1005
    [43] Yang SS. Chemotaxis determination and functional analysis of cheA and cheY gene in chemotaxis system of Acidovorax citrulli[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2015(in Chinese)杨姗姗. 西瓜嗜酸菌趋化性测定及趋化基因cheAcheY功能研究[D]. 北京:中国农业科学院硕士学位论文, 2015
    [44] Vande Broek A, Lambrecht M, Vanderleyden J. Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense[J]. Microbiology, 1998, 144(9):2599-2606
    [45] De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant Microbe Interactions, 2002, 15(11):1173-1180
    [46] Gaworzewska ET, Carlile MJ. Positive chemotaxis of Rhizobium leguminosarum and other bacteria towards root exudates from legumes and other plants[J]. Journal of General Microbiology, 1982, 128(6):1179-1188
    [47] Zhang N. Research of interaction between plant roots and rhizosphere beneficial Bacillus strains N11 and SQR9[D]. Nanjing:Doctoral Dissertation of Nanjing Agricultural University, 2012(in Chinese)张楠. 根际有益芽孢杆菌N11及SQR9与植物根系的互作研究[D]. 南京:南京农业大学博士学位论文, 2012
    [48] Rudrappa T, Czymmek KJ, Paré PW, Bais HP. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3):1547-1556
    [49] Zhao WS, Guo QG, Dong LH, Wang PP, Zhang XY, Su ZH, Lu XY, Li SZ, Ma P. Effect of L-proline on biofilm formation of Bacillus subtilis NCD-2[J]. Acta Phytopathologica Sinica, 2021, 51(1):115-122(in Chinese)赵卫松, 郭庆港, 董丽红, 王培培, 张晓云, 苏振贺, 鹿秀云, 李社增, 马平. L-脯氨酸对枯草芽胞杆菌NCD-2菌株生物膜形成的影响[J]. 植物病理学报, 2021, 51(1):115-122
    [50] Zhou HF, Luo CP, Fang XW, Xiang YP, Wang XY, Zhang RS, Chen ZY. Loss of GltB inhibits biofilm formation and biocontrol efficiency of Bacillus subtilis Bs916 by altering the production of γ-polyglutamate and three lipopeptides[J]. Plos One, 2016, 11(5):015624
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Lanlan, QIU Huizhen, DONG Aiju, WEI Ruyun. Effects of potato root exudates and phenolic acids on inducing chemotaxis of Bacillus atrophiae isolate QHZ3[J]. Microbiology China, 2021, 48(10): 3642-3654

Copy
Share
Article Metrics
  • Abstract:514
  • PDF: 1211
  • HTML: 1038
  • Cited by: 0
History
  • Received:January 08,2021
  • Adopted:February 23,2021
  • Online: October 12,2021
Article QR Code