Effect of Gardenia jasminoides Ellis with different intercropping crops on soil microecology
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Gardenia jasminoides Ellis is a perennial evergreen shrub. After years of continuous planting, it will lead to deterioration of the soil micro-ecological environment, aggravation of pests and diseases, and reduced quality. It was found that intercropping was an effective cultivation method in production to improve soil microflora, nutrient and enzyme activity. [Objective] In this study, the dynamic changes of the rhizosphere soil microflora, enzyme activity and nutrients of gardenia under different intercropping patterns were studied, in order to provide a theoretical basis for revealing the soil microecology mechanism of cultivation measures to improve the soil ecological environment and enhance the yield of gardenia.[Methods] To understand the effects of different intercropping patterns on the rhizosphere microecology, three-year-old gardenias were selected for field experiment. Random block design was adopted. Gardenia single cropping and Gardenia/Bletilla striata, Gardenia/Lysimachia christinae, Gardenia/Belamcanda chinensis three intercropping treatment were set, using Gardenia rhizosphere soil as the research material, sampling throughout the growth periods. Illumina high-throughput sequencing technology was used to determine the sequences of bacterial 16S rRNA gene V3—V4 and fungal rDNA ITS1—ITS2, and the physical and chemical properties of the soil in each period were determined, so as to clarify the intercropping of different crops on the gardenia rhizosphere microbial community and soil physical and chemical properties with the growth period.[Results] In the whole growth process of gardenia, the relative abundance of Proteobacteria and Acidobacteria in the rhizosphere bacterial community were 39% and 18%, respectively, which were the dominant bacteria. In the fungal community, the relative abundance of Ascomycota, Basidiomycota and Mortierellomycota accounted for 51%, 22% and 19%, respectively, which were the main fungal groups. In the fruit expansion stage, compared with single cropping, Gardenia/Belamcanda and Gardenia/Bletilla striata can significantly increase the Shannon index of soil bacterial communities by 6.55% and 3.45% (P<0.05), respectively, but there was no significant difference at other stages. In terms of rhizosphere fungi, Gardenia/Belamcanda does not significantly reduce the diversity during the full blooming period, while intercropping with Lysimachia or Bletilla will significantly decrease; In the fruit expansion stage, Gardenia/Belamcanda and Gardenia/Bletilla intercropping can significantly increase the Shannon index of the rhizosphere soil fungal community by 29.19% and 9.12%, respectively. In terms of soil nutrients, The contents of organic matter, total N and available P in rhizosphere soil of gardenia monoculture were higher, while the contents of alkaloid N and available K were lower than the three intercropping treatments. In terms of soil enzymes, except for the acid protease, the activities of the other soil enzymes of the single-cropped gardenia are at a lower level. Correlation analysis between soil physical and chemical properties and rhizosphere microbial diversity showed that the bacterial diversity index Shannon was significantly positive correlated with rhizosphere soil organic matter, available P, and extremely significantly positive correlated with pH (P<0.01); The fungal diversity index Shannon was significantly negative correlated with total K, urease and catalase in rhizosphere soil, and significantly positive correlated with available K, sucrase, acid phosphatase, and acid protease activities. The comprehensive scores of soil fertility in the blooming stage and fruit expansion stage showed that the soil fertility scores of Gardenia/Belamcanda was the highest, and that of Gardenia/Lysimachia was the lowest.[Conclusion] Reasonable intercropping can improve the microbial community structure in the rhizosphere, and improve the comprehensive soil fertility. The soil fertility comprehensive score of Gardenia/Belamcanda is the highest, they may be the desirable intercropping patterns for Gardenia cultivation.

    Reference
    [1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China[S]. Beijing:The Medicine Science and Technology Press of China, 2015:248(in Chinese)国家药典委员会. 中华人民共和国药典[S]. 北京:中国医药科技出版社, 2015:248
    [2] Cen B. The characteristics and application of natural gardenia yellow pigment[J]. China Food Additives, 1994(2):46-47(in Chinese)岑彬. 天然栀子黄色素的特性及应用概况[J]. 中国食品添加剂, 1994(2):46-47
    [3] Lu W, Qian H, Zhang WM, Zhao BT. Study on extraction and purification of Gardenia yellow[J]. China Food Additives, 2010(1):77-80(in Chinese)陆伟, 钱骅, 张卫明, 赵伯涛. 栀子黄色素的提取及精制研究[J]. 中国食品添加剂, 2010(1):77-80
    [4] Fei Y, Wang G, Zhu DP. Investigation and analysis on resources of gardeniae fructus in Chongqing[J]. Resource Development & Market, 2013, 29(10):1056-1059(in Chinese)费曜, 王刚, 朱丹平. 渝产栀子资源现状调查及分析[J]. 资源开发与市场, 2013, 29(10):1056-1059
    [5] Zhang QH. The study of tissue culture and protoplast preparation of Gardenia jasminoides Ellis[D]. Guangzhou:Master's Thesis of Guangzhou University of Chinese Medicine, 2015(in Chinese)张庆红. 栀子组织培养及原生质体分离的研究[D]. 广州:广州中医药大学硕士学位论文, 2015
    [6] Lu XX, Xing MY, Yao LM, Wang B, Wu TL, Zhao DY. Comparative analysis of the lentil-rice crop rotation on soil environment[J]. Acta Agriculturae Shanghai, 2016, 32(5):92-96(in Chinese)卢欣欣, 邢茂玉, 姚陆铭, 王彪, 武天龙, 赵大云. 扁豆-水稻轮作对土壤环境影响的比较分析[J]. 上海农业学报, 2016, 32(5):92-96
    [7] Sun XH. Mitigation effects of planting green manure and intercropping with peanut on continuous obstacle in potato field[D]. Tai'an:Master's Thesis of Shandong Agricultural University, 2018(in Chinese)孙晓涵. 种植绿肥和套作花生对双季马铃薯连作障碍的缓解效应[D]. 泰安:山东农业大学硕士学位论文, 2018
    [8] He DM, Wang H, Chen JL, Lai CJS, Yan ZY, Huang LQ. Microecology and geoherbalism of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2020, 45(2):290-302(in Chinese)何冬梅, 王海, 陈金龙, 赖长江生, 严铸云, 黄璐琦. 中药微生态与中药道地性[J]. 中国中药杂志, 2020, 45(2):290-302
    [9] Wei HM, He B, Liang Y, Wei ZW, Wei YL, Huang CB, Liu HY. Effects of different Chinese chestnut-crop intercropping patterns on soil physical and chemical properties[J]. Nonwood Forest Research, 2014, 32(3):150-153(in Chinese)韦宏民, 何斌, 梁运, 韦智卫, 韦雅玲, 黄承标, 刘红英. 不同板栗-农间作模式对土壤理化性质的影响[J]. 经济林研究, 2014, 32(3):150-153
    [10] Lv HF, Bie ZL, Cao HS, Nawaz MA, Sohail H, Huang Y, Cheng F, Kong QS. Wheat intercropping enhances the resistance of watermelon to Fusarium wilt[J]. China Cucurbits and Vegetables, 2019, 32(8):239-240(in Chinese)吕慧芳, 别之龙, 曹海顺, Nawaz MA, Sohail H, 黄远, 程菲, 孔秋生. 小麦间作提高西瓜对枯萎病的抗性研究[J]. 中国瓜菜, 2019, 32(8):239-240
    [11] Zhang WJ, Wang P, Chen XX, Feng H, Zhu LX. Effects of Platycodon grandiflorum/pepper intercropping on root growth, yield and quality of Platycodon grandiflorum[J]. China Journal of Chinese Materia Medica, 2018, 43(6):1111-1117(in Chinese)张文静, 王鹏, 陈香香, 冯惠, 祝丽香. 桔梗辣椒间作对桔梗根系生长及产量品质的影响[J]. 中国中药杂志, 2018, 43(6):1111-1117
    [12] He ZH, Tang KL, Li JS, Liu JM. A high-efficiency cultivation model of bitter gourd/taro intercropping for weight loss and medicine reduction[J]. China Vegetables, 2020(8):103-105(in Chinese)何振华, 唐可兰, 李健生, 刘剑眉. 苦瓜/芋立体间作减肥减药高效栽培模式[J]. 中国蔬菜, 2020(8):103-105
    [13] Zhuo S, He HZ, Li HS, Qin ZX, Wen XY, Li YJ. Effects of rhizo-remediation polychlorinated biphenyl contaminated soil under intercropping system[J]. Journal of Agro-Environment Science, 2010, 29(1):73-77(in Chinese)卓胜, 贺鸿志, 黎华寿, 秦之璇, 温贤有, 李拥军. 植物间作体系根际修复土壤多氯联苯的效应[J]. 农业环境科学学报, 2010, 29(1):73-77
    [14] Xu HQ, Huang J, Liu ZF, Wei YX, Su BM, Li T. Effects of cassava-peanut intercropping on microbial amount, community structure and diversity in rhizosphere soils[J]. Journal of Southern Agriculture, 2016, 47(2):185-190(in Chinese)徐海强, 黄洁, 刘子凡, 魏云霞, 苏必孟, 李天. 木薯/花生间作对其根际土壤微生物数量、群落结构及多样性的影响[J]. 南方农业学报, 2016, 47(2):185-190
    [15] Na XF, Zheng GQ, Peng L, Lei CY, Yang HY, Ma Y, Zhao Q, Shi SF. Microbial biodiversity in rhizosphere of Lycium bararum L. relative to cultivation history[J]. Acta Pedologica Sinica, 2016, 53(1):241-252(in Chinese)纳小凡, 郑国琦, 彭励, 雷川怡, 杨红艳, 马玉, 赵强, 石硕矾. 不同种植年限宁夏枸杞根际微生物多样性变化[J]. 土壤学报, 2016, 53(1):241-252
    [16] Wu P, Wang YF, Yang KJ, Zhang YF, Xue YW, Zhang PF, Chen TY, Pang C, Wang HP, Yin XW, et al. Effects of different nitrogen form and ratios on yield of maize and soil nutrient and enzymatic activity[J]. Soil and Fertilizer Sciences in China, 2018(5):24-32(in Chinese)武鹏, 王玉凤, 杨克军, 张翼飞, 薛盈文, 张鹏飞, 陈天宇, 庞晨, 王怀鹏, 尹雪巍, 等. 不同氮素形态及配比对土壤养分和酶活性及玉米产量的影响[J]. 中国土壤与肥料, 2018(5):24-32
    [17] Yang YF, Wu FQ, Duan HT, Xu N. Effects of different tillage measures on physical and chemical properties of gray brown desert soil and comprehensive evaluation of fertility in major wolfberry production areas of Qinghai[J]. Research of Soil and Water Conservation, 2020, 27(2):1-8(in Chinese)杨一凡, 吴发启, 段红腾, 徐宁. 青海主要枸杞产区不同耕作措施对灰棕漠土理化性质影响及肥力综合评价[J]. 水土保持研究, 2020, 27(2):1-8
    [18] Zhang WW, Wang C, Xue R, Wang LJ. Effects of salinity on the soil microbial community and soil fertility[J]. Journal of Integrative Agriculture, 2019, 18(6):1360-1368
    [19] Liu YY, Bu RY, Tang S, Han S, Wang H, Li M, Cheng WL, Li XW, Wu J, Zhu L. Effect of continuous straw-Chinese milk vetch synergistic return to the field on yield, nutrient accumulation and soil fertility of double cropping rice[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6):1008-1016(in Chinese)刘颖颖, 卜容燕, 唐杉, 韩上, 王慧, 李敏, 程文龙, 李晓韦, 武际, 朱林. 连续秸秆-紫云英协同还田对双季稻产量、养分积累及土壤肥力的影响[J]. 植物营养与肥料学报, 2020, 26(6):1008-1016
    [20] Taschen E, Amenc L, Tournier E, Deleporte P, Malagoli P, Fustec J, Bru D, Philippot L, Bernard L. Cereal-legume intercropping modifies the dynamics of the active rhizospheric bacterial community[J]. Rhizosphere, 2017, 3:191-195
    [21] Van Wyk DAB, Adeleke R, Rhode OHJ, Bezuidenhout CC, Mienie C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa[J]. Journal of Basic Microbiology, 2017, 57(9):781-792
    [22] Li J, Lin WF, Zhou LJ. Effects of intercropping different Zingiberaceae crops in mature rubber plantation on soil nutrients and soil enzymes[J]. Chinese Agricultural Science Bulletin, 2014, 30(31):192-198(in Chinese)李娟, 林位夫, 周立军. 成龄胶园间作不同姜科作物对土壤养分与土壤酶的影响[J]. 中国农学通报, 2014, 30(31):192-198
    [23] Wang P, Zhu LX, Chen XX, Feng H, Sun WS, Qin N. Effects of Platycodon grandiflorum and Allium fistulosum intercropping on soil nutrients, microorganism and enzyme activity[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3):668-675(in Chinese)王鹏, 祝丽香, 陈香香, 冯惠, 孙文帅, 秦宁. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响[J]. 植物营养与肥料学报, 2018, 24(3):668-675
    [24] Yan DR, Liu YJ, Feng LL, Ren TZ. Variation of soil nutrient in the combination of forestry and agricultural crops[J]. Journal of Northeast Forestry University, 2001, 29(1):53-56(in Chinese)闫德仁, 刘永军, 冯立岭, 任天忠. 农林复合经营土壤养分的变化[J]. 东北林业大学学报, 2001, 29(1):53-56
    [25] Wang JH, Wang PC, Zhao LL, Chen C, Huang JX. Effect of maize row spacing on soil enzyme activities in the rhizosphere of intercropping crops[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(19):103-110(in Chinese)王家豪, 王普昶, 赵丽丽, 陈超, 黄佳熊. 玉米行距对草田间作作物根围土壤酶活性的影响[J]. 黑龙江畜牧兽医, 2019(19):103-110
    [26] Hao WY, Ren LX, Ran W, Shen QR. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f. sp. niveum[J]. Plant and Soil, 2010, 336(1/2):485-497
    [27] Li XG, Ban MG, Zhou ZY, Yao T, Lu H. A brief introduction of application research in agriculture on soil microbial ecology[J]. Soil and Fertilizer Sciences in China, 2015(2):5-11(in Chinese)李显刚, 班镁光, 周泽英, 姚拓, 卢虎. 土壤微生物生态学在农业中的应用研究综述[J]. 中国土壤与肥料, 2015(2):5-11
    [28] Dong YF, Lv XZ, Zhang ZK, He HJ, Yu JQ, Zhou YH. Effects of different cultivation patterns on soil microbial community and enzyme activity in continuous cropped pepper field[J]. Acta Agriculturae Zhejiangensis, 2019, 31(9):1485-1492(in Chinese)董宇飞, 吕相漳, 张自坤, 贺洪军, 喻景权, 周艳虹. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报, 2019, 31(9):1485-1492
    [29] Wang Q, Liu ZL, Zhang JL, Long YY, Li DP, Che JL, Chen TS. Effect of ginger and corn intercropping on ginger yield and arbuscular mycorrhiza (AM) in its rhizosphere soil[J]. Molecular Plant Breeding, 2018, 16(12):4124-4128(in Chinese)汪茜, 刘增亮, 张金莲, 龙艳艳, 李冬萍, 车江旅, 陈廷速. 间作栽培对生姜产量及其根际土壤丛枝菌根真菌的影响[J]. 分子植物育种, 2018, 16(12):4124-4128
    [30] Zhou LJ, Wang YJ, Xie ZK, Zhang YB, Malhi SS, Guo ZH, Qiu Y, Wang L. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor[J]. Journal of Basic Microbiology, 2018, 58(10):892-901
    [31] Shen XF, Fang Y, Dong ZX, Chen Y. Effects of sugarcane/peanut intercropping on soil microbes and soil enzyme activities[J]. Crops, 2014(5):55-58(in Chinese)沈雪峰, 方越, 董朝霞, 陈勇. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014(5):55-58
    [32] Yang ZX, Tang L, Zheng Y, Dong K, Dong Y. Effects of different wheat cultivars intercropped with faba bean on faba bean Fusarium wilt, root exudates and rhizosphere microbial community functional diversity[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(3):570-579(in Chinese)杨智仙, 汤利, 郑毅, 董坤, 董艳. 不同品种小麦与蚕豆间作对蚕豆枯萎病发生、根系分泌物和根际微生物群落功能多样性的影响[J]. 植物营养与肥料学报, 2014, 20(3):570-579
    [33] Li D. Effect on soil properties and soil bacterial community structure by different land use in maoer mountain region[D]. Harbin:Master's Thesis of Northeast Forestry University, 2011(in Chinese)李丹. 不同土地利用方式对土壤性质及细菌群落结构的影响[D]. 哈尔滨:东北林业大学硕士学位论文, 2011
    [34] Zhang N, Guan WQ, Yan RX, Zhang P. Isolation and qualitative analysis of pathogenic bacteria for sweet cherry[J]. Chinese Agricultural Science Bulletin, 2012, 28(13):190-194(in Chinese)张娜, 关文强, 阎瑞香, 张平. 甜樱桃果实采后致病菌的分离及定性分析[J]. 中国农学通报, 2012, 28(13):190-194
    [35] Cong LL, Kang JM, Zhang TJ, Long RC, Yang QC. Identification and pathogenicity test of pathogenic Fusarium of alfalfa root rot[J]. Acta Agrestia Sinica, 2017, 25(4):857-865(in Chinese)丛丽丽, 康俊梅, 张铁军, 龙瑞才, 杨青川. 苜蓿镰刀菌根腐病病原菌的分离鉴定与致病性分析[J]. 草地学报, 2017, 25(4):857-865
    [36] Li QS, Wu LK, Chen J, Khan MA, Luo XM, Lin WX. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping[J]. Journal of Integrative Agriculture, 2016, 15(1):101-110
    [37] Liu YJ, Ma K, Li Y, Du CF, Li Q, Li H, Ma L, Wang CM. Effect of different intercropping cultivation patterns of potato on the structure and function of soil microorganism community[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(6):1186-1194(in Chinese)刘亚军, 马琨, 李越, 杜春凤, 李倩, 李贺, 马玲, 汪春明. 马铃薯间作栽培对土壤微生物群落结构与功能的影响[J]. 核农学报, 2018, 32(6):1186-1194
    [38] Tang XM, Meng XZ, Jiang J, Huang ZP, Wu HN, Liu J, He LQ, Xiong FQ, Zhong RC, Han ZQ, et al. Effects of sugarcane/peanut intercropping on soil microenvironment in different plough layer[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(5):713-722(in Chinese)唐秀梅, 蒙秀珍, 蒋菁, 黄志鹏, 吴海宁, 刘菁, 贺梁琼, 熊发前, 钟瑞春, 韩柱强, 等. 甘蔗间作花生对不同耕层土壤微生态的影响[J]. 中国油料作物学报, 2020, 42(5):713-722
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Qiaoling, XIAO Zhong, REN Mingbo, HAN Feng, HU Kaizhi. Effect of Gardenia jasminoides Ellis with different intercropping crops on soil microecology[J]. Microbiology China, 2021, 48(10): 3588-3602

Copy
Share
Article Metrics
  • Abstract:415
  • PDF: 1136
  • HTML: 698
  • Cited by: 0
History
  • Received:December 16,2020
  • Adopted:February 19,2021
  • Online: October 12,2021
Article QR Code