Characteristics of Cr(VI) reduction by dissimilatory Fe(III)-reducing bacterium LQ25
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Reducing Cr(VI) to Cr(III) by dissimilatory Fe(III)-reducing bacteria is an important way for remediation of chromium pollution. [Objective] This work examined the characteristics of Cr(VI) reduction by biogenic magnetite particles using dissimilatory Fe(III)-reducing bacterium Clostridium butyricum LQ25. [Methods] Strain LQ25 was grown under Fe(III)-reducing conditions and was used to produce biogenic magnetite particles using glucose as electron donors and insoluble iron hydroxide as the electron acceptor. The efficiencies of Cr(VI) reduction under Fe(III)-reducing conditions were examined with different Cr(VI) concentrations (5, 10, 15, 25 and 30 mg/L) added to the medium respectively. [Results] In the presence of iron hydroxide, strain LQ25 could grow within the set Cr(VI) concentration range with Cr(VI) reduction efficiency of 63.45%±5.13% at Cr(VI) concentration of 15 mg/L. When adding biogenic magnetite particles, Cr(VI) reduction efficiency of 87.73%±9.12% was obtained, increased by 38% compared with the control. Cr(VI) reduction by biogenic magnetite particles was decreased obviously with increasing pH solutions from 2.0 to 8.0. At pH 2.0, the reduction rate of Cr(VI) by biogenic magnetite particles was the highest, almost 100%. There were many pores on the surface of biogenic magnetite particles under scanning electron microscope. Biogenic magnetite particles showed XRD peaks include Fe(II) existed in the form of Fe(OH)2.[Conclusion] These results indicated that dissimilatory Fe(III)-reducing bacteria and the biogenic magnetite particles could reduce Cr(VI), which will provide the evidence for the application of dissimilatory Fe(III)-reducing bacteria into the reduction of Cr(VI).

    Reference
    [1] Zhang XL, Zhang SY, Feng JW. Preparation of nano-iron for removing Cr(VI) from wastewaters[J]. Chinese Journal of Environmental Engineering, 2012, 6(9):3167-3172(in Chinese)张显龙, 张思阳, 冯婧微. 纳米铁的制备及去除废水中的Cr(VI)[J]. 环境工程学报, 2012, 6(9):3167-3172
    [2] Yang Y, Gao Y, Cheng Q, Zhu ZY, Hu TT, Xu Q, Li AM. Isolation, identification and Cr(VI) reducing characteristics of a chromium-reducing bacteria[J]. Ecology and Environmental Sciences, 2018, 27(2):322-329(in Chinese)杨宇, 高宇, 程潜, 朱振宇, 胡婷婷, 徐全, 李爱民. 一株铬还原菌的分离鉴定及铬还原特性研究[J]. 生态环境学报, 2018, 27(2):322-329
    [3] Hu J, Li D, Hu SY, Yuan XZ. Cr(VI)-contaminated soil remediation by sacrificing Fe-anode[J]. Journal of Chongqing Technology and Business University:Natural Science Edition, 2017, 34(4):95-100(in Chinese)胡静, 李东, 胡思扬, 袁兴中. 牺牲铁阳极法修复铬(VI)污染土壤实验研究[J]. 重庆工商大学学报:自然科学版, 2017, 34(4):95-100
    [4] Tian Y, Huang LP, Zhou XH, Wu CB. Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions[J]. Journal of Hazardous Materials, 2012, 225/226:15-20
    [5] Zheng JZ, Shi M, Li J, Guo CY, Zhang L. Reductive immobilization of hexavalent chromium in contaminated soil and groundwater systems:a review[J]. Chinese Journal of Environmental Engineering, 2015, 9(7):3077-3085(in Chinese)郑建中, 石美, 李娟, 郭彩阳, 张良. 化学还原固定化土壤地下水中六价铬的研究进展[J]. 环境工程学报, 2015, 9(7):3077-3085
    [6] Tan X, Zeng JY, Zhang YF, Zeng QY, Chen SN. Biosorption and biotransformation of Cr(VI)/Cu(II) combined pollutant by Burkholderia sp.[J]. Environmental Pollution & Control, 2019, 41(8):932-937(in Chinese)檀笑, 曾洁仪, 张逸凡, 曾巧云, 陈烁娜. 一株典型伯克氏菌对Cr(VI)/Cu(II)复合污染的吸附转化[J]. 环境污染与防治, 2019, 41(8):932-937
    [7] Yue ZB, Li Q, Li CC, Chen TH, Wang J. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria[J]. Bioresource Technology, 2015, 194:399-402
    [8] Patra RC, Malik S, Beer M, Megharaj M, Naidu R. Molecular characterization of chromium(VI) reducing potential in Gram positive bacteria isolated from contaminated sites[J]. Soil Biology and Biochemistry, 2010, 42(10):1857-1863
    [9] Han JH, Song YY, Zhang TJ, Jiang QH, Zhang LK, Wang WD. Screening and identification of Cr(VI) reducing bacteria[J]. Microbiology China, 2020, 47(10):3206-3215(in Chinese)韩剑宏, 宋玉艳, 张铁军, 姜庆宏, 张连科, 王维大. Cr(VI)还原菌的筛选、鉴定及其还原物质分析[J]. 微生物学通报, 2020, 47(10):3206-3215
    [10] Liu AL, Wu ZG, Jiang X, Zhao MY, Yang ZZ. Isolation, identification and characterization of Cr(VI) reducing bacterium Microbacterium sp. BD6[J]. Acta Microbiologica Sinica, 2020, 60(1):95-105(in Chinese)刘爱霖, 吴志国, 江鑫, 赵明源, 杨宗政. Cr(VI)还原菌Microbacterium sp. BD6的分离鉴定及还原特性[J]. 微生物学报, 2020, 60(1):95-105
    [11] Ji ML, Yan J, Lin H, Li HX. Research progress on principles and applications of microbial reduction of hexavalent chromium[J]. Industrial Safety and Environmental Protection, 2015, 41(12):59-61,72(in Chinese)季梦兰, 严俊, 林华, 李海翔. Cr(VI)的微生物还原去除机理与应用研究进展[J]. 工业安全与环保, 2015, 41(12):59-61,72
    [12] Li X, Zhang XY, Wang T, Shen WR, Jiang T, Zhou J. Research on the growth characters of Desulfovibrio desulfuricans G20 and removal of Cr(VI)-containing sulfate wastewater[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(3):71-77(in Chinese)李想, 张雪英, 王婷, 沈蔚然, 姜添, 周俊. Desulfovibrio desulfuricans G20生理特性及处理含铬(VI)硫酸盐废水的研究[J]. 生物加工过程, 2018, 16(3):71-77
    [13] Wang Q, Huang LP, Pan YZ, Quan X, Li Puma G. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells:reduction of diffusional resistances and cathode overpotentials[J]. Journal of Hazardous Materials, 2017, 321:896-906
    [14] Du YY, Liu XH, Li J, Li LM, Si YB. Reduction of Cr(VI) by Shewanella oneidensis MR-1 and its influencing factors[J]. China Environmental Science, 2018, 38(7):2740-2745(in Chinese)杜艳影, 刘小红, 李劲, 李磊明, 司友斌. Shewanella oneidensis MR-1对Cr(VI)的还原及其影响因素[J]. 中国环境科学, 2018, 38(7):2740-2745
    [15] Xu WH, Liu YG, Zeng GM, Li X, Tang CF, Yuan XZ. Enhancing effect of iron on chromate reduction by Cellulomonas flavigena[J]. Journal of Hazardous Materials, 2005, 126(1/2/3):17-22
    [16] Zhang J, Dong HL, Zhao LD, McCarrick R, Agrawal A. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens[J]. Chemical Geology, 2014, 370:29-39
    [17] Byrne JM, Muhamadali H, Coker VS, Cooper J, Lloyd JR. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens[J]. Journal of the Royal Society, Interface, 2015, 12(107):20150240
    [18] Lovley DR, Stolz JF, Nord GL, Phillips EJP. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism[J]. Nature, 1987, 330(6145):252-254
    [19] Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E. Magnetite biomineralization induced by Shewanella oneidensis[J]. Geochimica et Cosmochimica Acta, 2010, 74(3):967-979
    [20] Watts MP, Coker VS, Parry SA, Pattrick RAD, Thomas RAP, Kalin R, Lloyd JR. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue[J]. Applied Geochemistry, 2015, 54:27-42
    [21] Byrne JM, Telling ND, Coker VS, Pattrick RAD, Van Der Laan G, Arenholz E, Tuna F, Lloyd JR. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens[J]. Nanotechnology, 2011, 22(45):455709
    [22] Prozorov T. Magnetic microbes:bacterial magnetite biomineralization[J]. Seminars in Cell & Developmental Biology, 2015, 46:36-43
    [23] Liu HY, Wang HY. Characterization of Fe(III)-reducing enrichment culture and isolation of Fe(III)-reducing bacterium Enterobacter sp. L6 from marine sediment[J]. Journal of Bioscience and Bioengineering, 2016, 122(1):92-96
    [24] Wang WM, Qu D, Xu J. Isolation of iron-reducing bacteria in paddy soil and its Fe(III) reduction potential analysis[J]. Journal of Northwest A&F University:Natural Science Edition, 2008, 36(10):103-109(in Chinese)王伟民, 曲东, 徐佳. 水稻土中铁还原菌的分离纯化及铁还原能力分析[J]. 西北农林科技大学学报:自然科学版, 2008, 36(10):103-109
    [25] Peng L, Liu YW, Gao SH, Dai XH, Ni BJ. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139:334-339
    [26] Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI. Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium[J]. Journal of Hazardous Materials, 2017, 333:42-53
    [27] Singh R, Gupta MK. Exploring the role of selected bacterial strains in chromium Cr(VI) reduction from soil[J]. International Journal of Scientific Research in Biological Sciences, 2019, 6(1):226-232
    [28] Murugavelh S, Mohanty K. Isolation, identification and characterization of Cr(VI) reducing Bacillus cereus from chromium contaminated soil[J]. Chemical Engineering Journal, 2013, 230:1-9
    [29] Yang Y, Huang L, Yang L, Xie D, Wang T. Reduction characteristics and differential expression of Acidiphilium cryptum XTS Cr(VI)-reduced related gene[J]. Microbiology China, 2015, 42(1):64-73(in Chinese)杨宇, 黄露, 杨罗, 谢丹, 王涛. 隐藏嗜酸菌Acidiphilium cryptum XTS的Cr(VI)还原特性及相关基因的差异表达[J]. 微生物学通报, 2015, 42(1):64-73
    [30] Liu XH, Chu G, Du YY, Li J, Si YB. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1[J]. World Journal of Microbiology and Biotechnology, 2019, 35(4):1-8
    [31] Hong X, Zhang XQ, Yan JH, Xia Q, Qiu HY, Lan GH. Investigation of Cr(VI) tolerance and removal by Pseudomonas S2-3[J]. Chinese Journal of Environmental Engineering, 2016, 10(3):1539-1545(in Chinese)洪霞, 张馨荃, 严君华, 夏琦, 邱海燕, 兰贵红. Pseudomonas S2-3菌株对Cr(VI)的耐受性及去除[J]. 环境工程学报, 2016, 10(3):1539-1545
    [32] Huang B, Gu LP, He H, Xu ZX, Pan XJ. Enhanced biotic and abiotic transformation of Cr(VI) by quinone-reducing bacteria/dissolved organic matter/Fe(III) in anaerobic environment[J]. Environmental Science Processes & Impacts, 2016, 18(9):1185-1192
    [33] Whitaker AH, Peña J, Amor M, Duckworth OW. Cr(VI) uptake and reduction by biogenic iron (oxyhydr)oxides[J]. Environmental Science Processes & Impacts, 2018, 20(7):1056-1068
    [34] Ding WX, Stewart DI, Humphreys PN, Rout SP, Burke IT. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site[J]. Science of the Total Environment, 2016, 541:1191-1199
    [35] Kim Y, Roh Y. Environmental application of biogenic magnetite nanoparticles to remediate chromium(III/VI)-contaminated water[J]. Minerals, 2019, 9(5):260
    [36] Liu XX, Wu HY, Gan M, Qiu GZ. Pyrite-based Cr(VI) reduction driven by chemoautotrophic acidophilic bacteria[J]. Frontiers in Microbiology, 2019, 10:3082
    [37] Pérez-Candela M, Martín-Martínez J, Torregrosa-Maciá R. Chromium(VI) removal with activated carbons[J]. Water Research, 1995, 29(9):2174-2180
    [38] Hu J, Chen GH, Lo IMC. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles[J]. Water Research, 2005, 39(18):4528-4536
    [39] Carvalho AAC, Silvestre DM, Leme FO, Naozuka J, Intima DP, Nomura CS. Feasibility of measuring Cr(III) and Cr(VI) in water by laser-induced breakdown spectroscopy using ceramics as the solid support[J]. Microchemical Journal, 2019, 144:33-38
    [40] Iwahori K, Watanabe JI, Tani Y, Seyama H, Miyata N. Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(III)-reducing microbial enrichment cultures[J]. Journal of Bioscience and Bioengineering, 2014, 117(3):333-335
    [41] Jung H, Kim JW, Choi H, Lee JH, Hur HG. Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation[J]. Applied Catalysis B:Environmental, 2008, 83(3/4):208-213
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

KANG Bolun, YUAN Yuan, WANG Shan, LIU Hongyan. Characteristics of Cr(VI) reduction by dissimilatory Fe(III)-reducing bacterium LQ25[J]. Microbiology China, 2021, 48(10): 3497-3505

Copy
Share
Article Metrics
  • Abstract:477
  • PDF: 1202
  • HTML: 863
  • Cited by: 0
History
  • Received:December 30,2020
  • Adopted:February 03,2021
  • Online: October 12,2021
Article QR Code