Origin, development, and application of anti-CRISPR
Author:
  • PEI Chenchen

    PEI Chenchen

    State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China;Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong 518000, China;Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • LI Yingjun

    LI Yingjun

    State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China;Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong 518000, China;Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
    Find this author on All Journals
    Find this author on BaiDu
    Search for this author on this site
  • Article
  • | |
  • Metrics
  • |
  • Reference [94]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The battle for survival between microbes such as bacteria and archaea and viruses (bacteriophages) is an arms race. Bacteria and archaea have evolved innate and adaptive immune systems to protect themselves from viruses. Viruses use different counter-defense strategies to evade these phage defense mechanisms. The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) system is an adaptive immune system that is widely encoded by bacteria and archaea to resist foreign genetic elements such as viruses. At the same time, viruses also evolved specific anti-CRISPR to resist the immunity of the CRISPR-Cas system. In this paper, the discovery process, classification and mechanism of anti-CRISPR have been systematically reviewed, and their potential applications have prospected.

    Reference
    [1] Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790):327-336
    [2] Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-cas:backward and forward[J]. Cell, 2018, 172(6):1239-1259
    [3] Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J. Anti-CRISPR protein applications:natural brakes for CRISPR-Cas technologies[J]. Nature Methods, 2020, 17(5):471-479
    [4] Li YJ, Peng N. Endogenous CRISPR-cas system-based genome editing and antimicrobials:review and prospects[J]. Frontiers in Microbiology, 2019, 10:2471
    [5] Jansen R, Embden JDAV, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6):1565-1575
    [6] Nussenzweig PM, Marraffini LA. Molecular mechanisms of CRISPR-cas immunity in bacteria[J]. Annual Review of Genetics, 2020, 54:93-120
    [7] Hille F, Charpentier E. CRISPR-Cas:biology, mechanisms and relevance[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2016, 371(1707):20150496
    [8] Marraffini LA. CRISPR-Cas immunity in prokaryotes[J]. Nature, 2015, 526(7571):55-61
    [9] Amitai G, Sorek R. CRISPR-Cas adaptation:insights into the mechanism of action[J]. Nature Reviews Microbiology, 2016, 14(2):67-76
    [10] Han WY, Li YJ, Deng L, Feng MX, Peng WF, Hallstrøm S, Zhang J, Peng N, Liang YX, White MF, et al. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction[J]. Nucleic Acids Research, 2017, 45(4):1983-1993
    [11] Han WY, Pan SF, López-Méndez B, Montoya G, She QX. Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail[J]. Nucleic Acids Research, 2017, 45(18):10740-10750
    [12] Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems[J]. Science, 2017, 357(6351):605-609
    [13] Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers[J]. Nature, 2017, 548(7669):543-548
    [14] Han WY, Stella S, Zhang Y, Guo T, Sulek K, Peng-Lundgren L, Montoya G, She QX. A type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding[J]. Nucleic Acids Research, 2018, 46(19):10319-10330
    [15] Deng L, Garrett RA, Shah SA, Peng X, She QX. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus[J]. Molecular Microbiology, 2013, 87(5):1088-1099
    [16] Li YJ, Zhang Y, Lin JZ, Pan SF, Han WY, Peng N, Liang YX, She QX. Cmr1 enables efficient RNA and DNA interference of a III-B CRISPR-Cas system by binding to target RNA and crRNA[J]. Nucleic Acids Research, 2017, 45(19):11305-11314
    [17] Pan SF, Li Q, Deng L, Jiang SP, Jin XX, Peng N, Liang YX, She QX, Li YJ. A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system[J]. RNA Biology, 2019, 16(9):1166-1178
    [18] Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJJ, Severinov K. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(25):10098-10103
    [19] Maxwell KL. The anti-CRISPR story:a battle for survival[J]. Molecular Cell, 2017, 68(1):8-14
    [20] Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432):429-432
    [21] Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR. A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa[J]. mBio, 2014, 5(2):e00896
    [22] Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, Fineran PC, Maxwell KL, Davidson AR. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species[J]. Nature Microbiology, 2016, 1(8):1-6
    [23] Birkholz N, Fagerlund RD, Smith LM, Jackson SA, Fineran PC. The autoregulator Aca2 mediates anti-CRISPR repression[J]. Nucleic Acids Research, 2019, 47(18):9658-9665
    [24] Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, et al. Discovery of widespread type I and type V CRISPR-Cas inhibitors[J]. Science, 2018, 362(6411):240-242
    [25] Pinilla-Redondo R, Shehreen S, Marino ND, Fagerlund RD, Brown CM, Sørensen SJ, Fineran PC, Bondy-Denomy J. Discovery of multiple anti-CRISPRs highlights anti-defense gene clustering in mobile genetic elements[J]. Nature Communications, 2020, 11:5652
    [26] Watters KE, Shivram H, Fellmann C, Lew KJ, McMahon B, Doudna JA. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117:6531-6539
    [27] Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao JQ, Wiedmann M, Patel DJ, Marraffini LA. A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity[J]. Science, 2020, 369(6499):54-59
    [28] Maji B, Gangopadhyay SA, Lee M, Shi MC, Wu P, Heler R, Mok B, Lim D, Siriwardena SU, Paul B, et al. A high-throughput platform to identify small-molecule inhibitors of CRISPR-Cas9[J]. Cell, 2019, 177(4):1067-1079.e19
    [29] Jia N, Patel DJ. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins[J]. Nature Reviews Molecular Cell Biology, 2021, 22(8):563-579
    [30] Yu LF, Marchisio MA. Types I and V anti-CRISPR proteins:from phage defense to eukaryotic synthetic gene circuits[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8:575393
    [31] León LM, Park AE, Borges AL, Zhang JY, Bondy-Denomy J. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa[J]. Nucleic Acids Research, 2021, 49(4):2114-2125
    [32] Gussow AB, Park AE, Borges AL, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV. Machine-learning approach expands the repertoire of anti-CRISPR protein families[J]. Nature Communications, 2020, 11:3784
    [33] He F, Bhoobalan-Chitty Y, Van LB, Kjeldsen AL, Dedola M, Makarova KS, Koonin EV, Brodersen DE, Peng X. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity[J]. Nature Microbiology, 2018, 3(4):461-469
    [34] Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF, Davidson AR, Maxwell KL. Disabling a type I-E CRISPR-cas nuclease with a bacteriophage-encoded anti-CRISPR protein[J]. mBio, 2017, 8(6):e01751-e01717
    [35] Bondy-Denomy J, Garcia B, Strum S, Du MJ, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins[J]. Nature, 2015, 526(7571):136-139
    [36] Wang XF, Yao DQ, Xu JG, Li A, Xu JP, Fu PH, Zhou Y, Zhu YQ. Structural basis of Cas3 inhibition by the bacteriophage protein AcrF3[J]. Nature Structural & Molecular Biology, 2016, 23(9):868-870
    [37] Zhang KM, Wang S, Li SS, Zhu YW, Pintilie GD, Mou TC, Schmid MF, Huang ZW, Chiu W. Inhibition mechanisms of AcrF9, AcrF8, and AcrF6 against type I-F CRISPR-Cas complex revealed by cryo-EM[J]. PNAS, 2020, 117(13):7176-7182
    [38] Osuna BA, Karambelkar S, Mahendra C, Christie KA, Garcia B, Davidson AR, Kleinstiver BP, Kilcher S, Bondy-Denomy J. Listeria phages induce Cas9 degradation to protect lysogenic genomes[J]. Cell Host & Microbe, 2020, 28(1):31-40.e9
    [39] Dong D, Guo MH, Wang SH, Zhu YW, Wang S, Xiong Z, Yang JZ, Xu ZL, Huang ZW. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein[J]. Nature, 2017, 546(7658):436-439
    [40] Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J. Inhibition of CRISPR-Cas9 with bacteriophage proteins[J]. Cell, 2017, 168(1/2):150-158.e10
    [41] Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, Börner K, Fakhiri J, Schmelas C, Dietz L, et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9[J]. Nature Methods, 2018, 15(11):924-927
    [42] Hynes AP, Rousseau GM, Lemay ML, Horvath P, Romero DA, Fremaux C, Moineau S. An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9[J]. Nature Microbiology, 2017, 2(10):1374-1380
    [43] Song GX, Zhang F, Zhang XW, Gao X, Zhu XX, Fan DD, Tian Y. AcrIIA5 inhibits a broad range of Cas9 orthologs by preventing DNA target cleavage[J]. Cell Reports, 2019, 29(9):2579-2589.e4
    [44] Fuchsbauer O, Swuec P, Zimberger C, Amigues B, Levesque S, Agudelo D, Duringer A, Chaves-Sanjuan A, Spinelli S, Rousseau GM, et al. Cas9 allosteric inhibition by the anti-CRISPR protein AcrIIA6[J]. Molecular Cell, 2019, 76(6):922-937.e7
    [45] Uribe RV, van der Helm E, Misiakou MA, Lee SW, Kol S, Sommer MOA. Discovery and characterization of Cas9 inhibitors disseminated across seven bacterial Phyla[J]. Cell Host & Microbe, 2019, 25(2):233-241
    [46] Forsberg KJ, Bhatt IV, Schmidtke DT, Stoddard BL, Kaiser BK, Malik HS. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome[J]. eLife, 2019, 8:e46540
    [47] Wiegand T, Karambelkar S, Bondy-Denomy J, Wiedenheft B. Structures and strategies of anti-CRISPR-mediated immune suppression[J]. Annual Review of Microbiology, 2020, 74:21-37
    [48] Mahendra C, Christie KA, Osuna BA, Pinilla-Redondo R, Kleinstiver BP, Bondy-Denomy J. Broad-spectrum anti-CRISPR proteins facilitate horizontal gene transfer[J]. Nature Microbiology, 2020, 5(4):620-629
    [49] Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas FUAA. Machine learning predicts new anti-CRISPR proteins[J]. Nucleic Acids Research, 2020, 48(9):4698-4708
    [50] Forsberg KJ, Schmidtke DT, Werther R, Hausman D, Malik HS. AcrIIA22 is a novel anti-CRISPR that impairs SpyCas9 activity by relieving DNA torsion of target plasmids[EB/OL]. 2020
    [51] Varble A, Campisi E, Euler CW, Fyodorova J, Rostøl JT, Fischetti VA, Marraffini LA. Integration of prophages into CRISPR loci remodels viral immunity in Streptococcus pyogenes[J]. bioRxiv, 2020
    [52] Harrington LB, Doxzen KW, Ma EB, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, et al. A broad-spectrum inhibitor of CRISPR-cas9[J]. Cell, 2017, 170(6):1224-1233
    [53] Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M, Sun W, Wang M, Harrington L, Hwang S, Hidalgo-Reyes Y, et al. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2[J]. Nature Communications, 2019, 10:2806
    [54] Zhu YL, Gao A, Zhan Q, Wang Y, Feng H, Liu SQ, Gao GX, Serganov A, Gao P. Diverse mechanisms of CRISPR-Cas9 inhibition by type IIC anti-CRISPR proteins[J]. Molecular Cell, 2019, 74(2):296-309
    [55] Kim Y, Lee SJ, Yoon HJ, Kim NK, Lee BJ, Suh JY. Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain[J]. The FEBS Journal, 2019, 286(23):4661-4674
    [56] Lee J, Mir A, Edraki A, Garcia B, Amrani N, Lou HE, Gainetdinov I, Pawluk A, Ibraheim R, Gao XD, et al. Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins[J]. mBio, 2018, 9(6):e02321-18
    [57] Bhoobalan-Chitty Y, Johansen TB, Di Cianni N, Peng X. Inhibition of type III CRISPR-cas immunity by an archaeal virus-encoded anti-CRISPR protein[J]. Cell, 2019, 179(2):448-458
    [58] Athukoralage JS, McMahon SA, Zhang CY, Grüschow S, Graham S, Krupovic M, Whitaker RJ, Gloster TM, White MF. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity[J]. Nature, 2020, 577(7791):572-575
    [59] Knott GJ, Thornton BW, Lobba MJ, Liu JJ, Al-Shayeb B, Watters KE, Doudna JA. Broad-spectrum enzymatic inhibition of CRISPR-Cas12a[J]. Nature Structural & Molecular Biology, 2019, 26(4):315-321
    [60] Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang LF. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins[J]. Cell Host & Microbe, 2019, 25(6):815-826
    [61] Peng RC, Li ZT, Xu Y, He SS, Peng Q, Wu LN, Wu Y, Qi JX, Wang PY, Shi Y, et al. Structural insight into multistage inhibition of CRISPR-Cas12a by AcrVA4[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(38):18928-18936
    [62] Dong LY, Guan XY, Li NN, Zhang F, Zhu YW, Ren K, Yu L, Zhou FX, Han ZF, Gao N, et al. An anti-CRISPR protein disables type V Cas12a by acetylation[J]. Nature Structural & Molecular Biology, 2019, 26(4):308-314
    [63] Smargon AA, Cox DBT, Pyzocha NK, Zheng KJ, Slaymaker IM, Gootenberg JS, Abudayyeh OA, Essletzbichler P, Shmakov S, Makarova KS, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Molecular Cell, 2017, 65(4):618-630
    [64] Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, Fineran PC. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity[J]. Nature Microbiology, 2020, 5(1):48-55
    [65] Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, Chaikeeratisak V, Pogliano J, Agard DA, Bondy-Denomy J. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases[J]. Nature, 2020, 577(7789):244-248
    [66] Cui YR, Wang SJ, Chen J, Li J, Chen WZ, Wang SY, Meng B, Zhu W, Zhang ZH, Yang B, et al. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides[J]. Genome Biology, 2020, 21(1):1-15
    [67] Wang JY, Ma J, Cheng Z, Meng X, You LL, Wang M, Zhang XZ, Wang YL. A CRISPR evolutionary arms race:Structural insights into viral anti-CRISPR/Cas responses[J]. Cell Research, 2016, 26(10):1165-1168
    [68] Chen BH, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/cas system[J]. Cell, 2013, 155(7):1479-1491
    [69] Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini LA, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823
    [70] Gilbert LA, Larson MH, Morsut L, Liu ZR, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2):442-451
    [71] East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JHD, Tjian R, Doudna JA. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273
    [72] Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442
    [73] Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448
    [74] Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TSF, Kehe J, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811):277-282
    [75] Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F. A cytosine deaminase for programmable single-base RNA editing[J]. Science, 2019, 365(6451):382-386
    [76] Grünewald J, Zhou RH, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756):433-437
    [77] Zhou CY, Sun YD, Yan R, Liu YJ, Zuo EW, Gu C, Han LX, Wei Y, Hu XD, Zeng R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764):275-278
    [78] Kim D, Bae SS, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS. Digenome-seq:genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nature Methods, 2015, 12(3):237-243
    [79] Newton MD, Taylor BJ, Driessen RPC, Roos L, Cvetesic N, Allyjaun S, Lenhard B, Cuomo ME, Rueda DS. DNA stretching induces Cas9 off-target activity[J]. Nature Structural & Molecular Biology, 2019, 26(3):185-192
    [80] Shin J, Jiang FG, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA. Disabling Cas9 by an anti-CRISPR DNA mimic[J]. Science Advances, 2017, 3(7):e1701620
    [81] Liu XS, Wu H, Krzisch M, Wu XB, Graef J, Muffat J, Hnisz D, Li CH, Yuan BB, Xu CY, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene[J]. Cell, 2018, 172(5):979-992
    [82] Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA, La Russa M, Lau MB, Abbott TR, Xu XS, Zhao DH, et al. Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells[J]. Nature Communications, 2019, 10:194
    [83] Sha YY, Qiu YB, Zhu YF, Sun T, Luo ZS, Gao J, Feng XH, Li S, Xu H. CRISPRi-based dynamic regulation of hydrolase for the synthesis of poly-γ-glutamic acid with variable molecular weights[J]. ACS Synthetic Biology, 2020, 9(9):2450-2459
    [84] Moradpour M, Abdulah SNA. CRISPR/dCas9 platforms in plants:strategies and applications beyond genome editing[J]. Plant Biotechnology Journal, 2020, 18(1):32-44
    [85] Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR:discovery, mechanism and function[J]. Nature Reviews Microbiology, 2018, 16(1):12-17
    [86] Kampmann M. CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine[J]. ACS Chemical Biology, 2018, 13(2):406-416
    [87] Maeder ML, Linder SJ, Cascio VM, Fu YF, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes[J]. Nature Methods, 2013, 10(10):977-979
    [88] Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang LH, Church GM. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology, 2013, 31(9):833-838
    [89] Boudry P, Semenova E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, Ospina-Bedoya M, Fortier LC, Severinov K, Dupuy B, et al. Function of the CRISPR-cas system of the human pathogen Clostridium difficile[J]. mBio, 2015, 6(5):e01112-e01115
    [90] Van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras JB, Barbu EM, Shortridge D, Blanc B, Hannum G, Zambardi G, et al. Phylogenetic distribution of CRISPR-cas systems in antibiotic-resistant Pseudomonas aeruginosa[J]. mBio, 2015, 6(6):e01796-e01715
    [91] Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nature Biotechnology, 2013, 31(3):233-239
    [92] Li YJ, Pan SF, Zhang Y, Ren M, Feng MX, Peng N, Chen LM, Liang YX, She QX. Harnessing type I and type III CRISPR-Cas systems for genome editing[J]. Nucleic Acids Research, 2016, 44(4):e34
    [93] Osuna BA, Karambelkar S, Mahendra C, Sarbach A, Johnson MC, Kilcher S, Bondy-Denomy J. Critical anti-CRISPR locus repression by a bi-functional Cas9 inhibitor[J]. Cell Host & Microbe, 2020, 28(1):23-30
    [94] Sofos N, Feng MX, Stella S, Pape T, Fuglsang A, Lin JZ, Huang QH, Li YJ, She QX, Montoya G. Structures of the cmr-β complex reveal the regulation of the immunity mechanism of type III-B CRISPR-cas[J]. Molecular Cell, 2020, 79(5):741-757
    Cited by
Get Citation

PEI Chenchen, LI Yingjun. Origin, development, and application of anti-CRISPR[J]. Microbiology China, 2021, 48(9): 3353-3367

Copy
Share
Article Metrics
  • Abstract:687
  • PDF: 1136
  • HTML: 1785
  • Cited by: 0
History
  • Received:May 29,2021
  • Adopted:July 30,2021
  • Online: September 08,2021
Article QR Code