Molecular mechanisms of bacterial resistance to bacteriophage infection: a review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [84]
  • |
  • Related [20]
  • | | |
  • Comments
    Reference
    [1] Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens[J]. Virulence, 2013, 4(5):354-365
    [2] Hampton HG, Watson BNJ, Fineran PC. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790):327-336
    [3] Bao J, Wu NN, Zeng YG, Chen LG, Li LL, Yang L, Zhang YY, Guo MQ, Li LS, Li J, et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae[J]. Emerging Microbes & Infections, 2020, 9(1):771-774
    [4] Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy:a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2):219-232
    [5] El Haddad L, Harb CP, Gebara MA, Stibich MA, Chemaly RF. A systematic and critical review of bacteriophage therapy against multidrug-resistant ESKAPE organisms in humans[J]. Clinical Infectious Diseases, 2019, 69(1):167-178
    [6] Christen M, Beusch C, Bösch Y, Cerletti D, Flores-Tinoco CE, Del Medico L, Tschan F, Christen B. Quantitative selection analysis of bacteriophage φCbK susceptibility in Caulobacter crescentus[J]. Journal of Molecular Biology, 2016, 428(2):419-430
    [7] Chibeu A, Ceyssens PJ, Hertveldt K, Volckaert G, Cornelis P, Matthijs S, Lavigne R. The adsorption of Pseudomonas aeruginosa bacteriophage φKMV is dependent on expression regulation of type IV pili genes[J]. FEMS Microbiology Letters, 2009, 296(2):210-218
    [8] Le S, He XS, Tan YL, Huang GT, Zhang L, Lux R, Shi WY, Hu FQ. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004[J]. PLoS One, 2013, 8(7):e68562
    [9] Li G, Shen MY, Yang YH, Le S, Li M, Wang J, Zhao Y, Tan YL, Hu FQ, Lu SG. Adaptation of Pseudomonas aeruginosa to phage PaP1 predation via O-antigen polymerase mutation[J]. Frontiers in Microbiology, 2018, 9:1170
    [10] Altamirano FG, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kielty L, et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials[J]. Nature Microbiology, 2021, 6(2):157-161
    [11] Zhang XX, Xiong DY, Yu J, Yang HP, He P, Wei HP. Genetic polymorphism drives susceptibility between bacteria and bacteriophages[J]. Frontiers in Microbiology, 2021, 12:627897
    [12] Shen MY, Zhang HD, Shen W, Zou ZY, Lu SG, Li G, He XS, Agnello M, Shi WY, Hu FQ, et al. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation[J]. Nucleic Acids Research, 2018, 46(9):4505-4514
    [13] Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, Connerton IF. Genome dynamics of Campylobacter jejuni in response to bacteriophage predation[J]. PLoS Pathogens, 2007, 3(8):e119
    [14] Tan DM, Zhang YY, Qin JH, Le S, Gu JM, Chen LK, Guo XK, Zhu TY. A frameshift mutation in wcaJ associated with phage resistance in Klebsiella pneumoniae[J]. Microorganisms, 2020, 8(3):378
    [15] Yang YH, Shen W, Zhong Q, Chen Q, He XS, Baker JL, Xiong K, Jin XL, Wang J, Hu FQ, et al. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2020, 11:327
    [16] Harvey H, Bondy-Denomy J, Marquis H, Sztanko KM, Davidson AR, Burrows LL. Pseudomonas aeruginosa defends against phages through type IV Pilus glycosylation[J]. Nature Microbiology, 2018, 3(1):47-52
    [17] Kim M, Ryu S. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium[J]. Molecular Microbiology, 2012, 86(2):411-425
    [18] Ohshima Y, Schumacher-Perdreau F, Peters G, Pulverer G. The role of capsule as a barrier to bacteriophage adsorption in an encapsulated Staphylococcus simulans strain[J]. Medical Microbiology and Immunology, 1988, 177(4):229-233
    [19] Scanlan PD, Buckling A. Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25[J]. The ISME Journal, 2012, 6(6):1148-1158
    [20] Plançon L, Janmot C, Le Maire M, Desmadril M, Bonhivers M, Letellier L, Boulanger P. Characterization of a high-affinity complex between the bacterial outer membrane protein FhuA and the phage T5 protein pb5[J]. Journal of Molecular Biology, 2002, 318(2):557-569
    [21] Destoumieux-Garzón D, Duquesne S, Peduzzi J, Goulard C, Desmadril M, Letellier L, Rebuffat S, Boulanger P. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25:role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism[J]. Biochemical Journal, 2005, 389(3):869-876
    [22] Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles[J]. Annual Review of Microbiology, 2010, 64(1):163-184
    [23] Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1):81-94
    [24] Rostøl JT, Marraffini L. (ph)ighting phages:how bacteria resist their parasites[J]. Cell Host & Microbe, 2019, 25(2):184-194
    [25] Manning AJ, Kuehn MJ. Contribution of bacterial outer membrane vesicles to innate bacterial defense[J]. BMC Microbiology, 2011, 11(1):258
    [26] Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms[J]. Nature Reviews Microbiology, 2010, 8(5):317-327
    [27] Lu MJ, Henning U. Superinfection exclusion by T-even-type coliphages[J]. Trends in Microbiology, 1994, 2(4):137-139
    [28] Lu MJ, Stierhof YD, Henning U. Location and unusual membrane topology of the immunity protein of the Escherichia coli phage T4[J]. Journal of Virology, 1993, 67(8):4905-4913
    [29] Kao SH, McClain WH. Baseplate protein of bacteriophage T4 with both structural and lytic functions[J]. Journal of Virology, 1980, 34(1):95-103
    [30] Kao SH, McClain WH. Roles of bacteriophage T4 gene 5 and gene s products in cell lysis[J]. Journal of Virology, 1980, 34(1):104-107
    [31] Domingo-Calap P, Mora-Quilis L, Sanjuán R. Social bacteriophages[J]. Microorganisms, 2020, 8(4):533
    [32] Tock MR, Dryden DT. The biology of restriction and anti-restriction[J]. Current Opinion in Microbiology, 2005, 8(4):466-472
    [33] Hoskisson PA, Sumby P, Smith MCM. The phage growth limitation system in Streptomyces coelicolor A(3)2 is a toxin/antitoxin system, comprising enzymes with DNA methyltransferase, protein kinase and ATPase activity[J]. Virology, 2015, 477:100-109
    [34] Sumby P, Smith MCM. Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2)[J]. Molecular Microbiology, 2002, 44(2):489-500
    [35] Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, Afik S, Ofir G, Sorek R. BREX is a novel phage resistance system widespread in microbial genomes[J]. The EMBO Journal, 2015, 34(2):169-183
    [36] Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T, Tsvetkova K, Matlashov M, Truncaitė L, Morgan RD, Ivanov NV, et al. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site[J]. Nucleic Acids Research, 2019, 47(1):253-265
    [37] Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, Doron S, Sorek R. DISARM is a widespread bacterial defence system with broad anti-phage activities[J]. Nature Microbiology, 2018, 3(1):90-98
    [38] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819):1709-1712
    [39] Amitai G, Sorek R. CRISPR-Cas adaptation:insights into the mechanism of action[J]. Nature Reviews Microbiology, 2016, 14(2):67-76
    [40] Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37:67-78
    [41] McGinn J, Marraffini LA. Molecular mechanisms of CRISPR-Cas spacer acquisition[J]. Nature Reviews Microbiology, 2019, 17(1):7-12
    [42] Modell JW, Jiang WY, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity[J]. Nature, 2017, 544(7648):101-104
    [43] Arslan Z, Hermanns V, Wurm R, Wagner R, Pul Ü. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system[J]. Nucleic Acids Research, 2014, 42(12):7884-7893
    [44] Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. CRISPR adaptation biases explain preference for acquisition of foreign DNA[J]. Nature, 2015, 520(7548):505-510
    [45] Lin P, Pu QQ, Shen GW, Li RP, Guo K, Zhou CM, Liang HH, Jiang JX, Wu M. CdpR inhibits CRISPR-cas adaptive immunity to lower anti-viral defense while avoiding self-reactivity[J]. iScience, 2019, 13:55-68
    [46] Nuñez JK, Kranzusch PJ, Noeske J, Wright AV, Davies CW, Doudna JA. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity[J]. Nature Structural & Molecular Biology, 2014, 21(6):528-534
    [47] Kronheim S, Daniel-Ivad M, Duan Z, Hwang S, Wong AI, Mantel I, Nodwell JR, Maxwell KL. A chemical defence against phage infection[J]. Nature, 2018, 564(7735):283-286
    [48] Davies J. Specialized microbial metabolites:functions and origins[J]. The Journal of Antibiotics, 2013, 66(7):361-364
    [49] Vetsigian K, Jajoo R, Kishony R. Structure and evolution of Streptomyces interaction networks in soil and in silico[J]. PLoS Biology, 2011, 9(10):e1001184
    [50] Lopatina A, Tal N, Sorek R. Abortive infection:bacterial suicide as an antiviral immune strategy[J]. Annual Review of Virology, 2020, 7(1):371-384
    [51] Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L. The Rex system of bacteriophage lambda:tolerance and altruistic cell death[J]. Genes & Development, 1992, 6(3):497-510
    [52] Kao C, Snyder L. The lit gene product which blocks bacteriophage T4 late gene expression is a membrane protein encoded by a cryptic DNA element, e14[J]. Journal of Bacteriology, 1988, 170(5):2056-2062
    [53] Georgiou T, Yu YN, Ekunwe S, Buttner MJ, Zuurmond A, Kraal B, Kleanthous C, Snyder L. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(6):2891-2895
    [54] Yu YT, Snyder L. Translation elongation factor Tu cleaved by a phage-exclusion system[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(2):802-806
    [55] Dy RL, Richter C, Salmond GPC, Fineran PC. Remarkable mechanisms in microbes to resist phage infections[J]. Annual Review of Virology, 2014, 1(1):307-331
    [56] Levitz R, Chapman D, Amitsur M, Green R, Snyder L, Kaufmann G. The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease[J]. The EMBO Journal, 1990, 9(5):1383-1389
    [57] Amitsur M, Morad I, Chapman-Shimshoni D, Kaufmann G. HSD restriction-modification proteins partake in latent anticodon nuclease[J]. The EMBO Journal, 1992, 11(8):3129-3134
    [58] Snyder L. Phage-exclusion enzymes:a bonanza of biochemical and cell biology reagents?[J]. Molecular Microbiology, 1995, 15(3):415-420
    [59] Chapman D, Morad I, Kaufmann G, Gait MJ, Jorissen L, Snyder L. Nucleotide and deduced amino acid sequence of stp:the bacteriophage T4 anticodon nuclease gene[J]. Journal of Molecular Biology, 1988, 199(2):373-377
    [60] Anba J, Bidnenko E, Hillier A, Ehrlich D, Chopin MC. Characterization of the lactococcal abiD1 gene coding for phage abortive infection[J]. Journal of Bacteriology, 1995, 177(13):3818-3823
    [61] Bidnenko E, Chopin A, Ehrlich SD, Chopin MC. Activation of mRNA translation by phage protein and low temperature:the case of Lactococcus lactis abortive infection system AbiD1[J]. BMC Molecular Biology, 2009, 10:4
    [62] Bidnenko E, Chopin MC, Ehrlich SD, Anba J. Lactococcus lactis AbiD1 abortive infection efficiency is drastically increased by a phage protein[J]. FEMS Microbiology Letters, 2002, 214(2):283-287
    [63] Bidnenko E, Ehrlich SD, Chopin MC. Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC[J]. Molecular Microbiology, 1998, 28(4):823-834
    [64] Scaltriti E, Launay H, Genois MM, Bron P, Rivetti C, Grolli S, Ploquin M, Campanacci V, Tegoni M, Cambillau C, et al. Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism[J]. Molecular Microbiology, 2011, 80(1):102-116
    [65] Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, Luisi BF, Salmond GPC. A processed noncoding RNA regulates an altruistic bacterial antiviral system[J]. Nature Structural & Molecular Biology, 2011, 18(2):185-190
    [66] Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GPC. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair[J]. PNAS, 2009, 106(3):894-899
    [67] Blower TR, Fineran PC, Johnson MJ, Toth IK, Humphreys DP, Salmond GPC. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia[J]. Journal of Bacteriology, 2009, 191(19):6029-6039
    [68] Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R. Cyclic GMP-AMP signalling protects bacteria against viral infection[J]. Nature, 2019, 574(7780):691-695
    [69] Martínez-Rubio R, Quiles-Puchalt N, Martí M, Humphrey S, Ram G, Smyth D, Chen J, Novick RP, Penadés JR. Phage-inducible islands in the Gram-positive cocci[J]. The ISME Journal, 2017, 11(4):1029-1042
    [70] Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen J, Davies R, Penadés JR. Phage-inducible chromosomal Islands are ubiquitous within the bacterial universe[J]. The ISME Journal, 2018, 12(9):2114-2128
    [71] Tormo-Más MÁ, Mir I, Shrestha A, Tallent SM, Campoy S, Lasa Í, Barbé J, Novick RP, Christie GE, Penadés JR. Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity Islands[J]. Nature, 2010, 465(7299):779-782
    [72] Ubeda C, Maiques E, Tormo MA, Campoy S, Lasa I, Barbé J, Novick RP, Penadés JR. SaPI operon I is required for SaPI packaging and is controlled by LexA[J]. Molecular Microbiology, 2007, 65(1):41-50
    [73] Fillol-Salom A, Miguel-Romero L, Marina A, Chen J, Penadés JR. Beyond the CRISPR-Cas safeguard:PICI-encoded innate immune systems protect bacteria from bacteriophage predation[J]. Current Opinion in Microbiology, 2020, 56:52-58
    [74] Koonin EV, Makarova KS, Wolf YI. Evolutionary genomics of defense systems in Archaea and bacteria[J]. Annual Review of Microbiology, 2017, 71:233-261
    [75] Van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3):745-763
    [76] Bernheim A, Sorek R. The Pan-immune system of bacteria:antiviral defence as a community resource[J]. Nature Reviews Microbiology, 2020, 18(2):113-119
    [77] Hynes AP, Villion M, Moineau S. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages[J]. Nature Communications, 2014, 5:4399
    [78] Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, Hall J, Marraffini LA, Jinek M. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers[J]. Nature, 2017, 548(7669):543-548
    [79] Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems[J]. Science, 2017, 357(6351):605-609
    [80] Meeske AJ, Nakandakari-Higa S, Marraffini LA. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage[J]. Nature, 2019, 570(7760):241-245
    [81] Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3):125-138
    [82] Makarova KS, Wolf YI, Snir S, Koonin EV. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems[J]. Journal of Bacteriology, 2011, 193(21):6039-6056
    [83] Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Mai KR, Amitai G, Sorek R. Systematic discovery of antiphage defense systems in the microbial pangenome[J]. Science, 2018, 359(6379):eaar4120
    [84] Gao LY, Altae-Tran H, Böhning F, Makarova KS, Segel M, Schmid-Burgk JL, Koob J, Wolf YI, Koonin EV, Zhang F. Diverse enzymatic activities mediate antiviral immunity in prokaryotes[J]. Science, 2020, 369(6507):1077-1084
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHONG Zhuojun, RAO Xiancai, LE Shuai. Molecular mechanisms of bacterial resistance to bacteriophage infection: a review[J]. Microbiology China, 2021, 48(9): 3249-3260

Copy
Share
Article Metrics
  • Abstract:842
  • PDF: 1807
  • HTML: 3720
  • Cited by: 0
History
  • Received:May 31,2021
  • Adopted:July 01,2021
  • Online: September 08,2021
Article QR Code