Characterization of a PB1-like phage PHW2 infecting Pseudomonas aeruginosa
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] Pseudomonas aeruginosa is one of the main opportunistic pathogen that has an important role in nosocomial, acute, and chronic infections. The multidrug resistant (MDR) P. aeruginosa remains a common cause of severe nosocomial infection. Phages are viruses that infect and can kill bacteria, and phage therapy is an alternative treatment to eradicate MDR P. aeruginosa infection. [Objective] To isolate virulent phages that infect carbapenem-resistant P. aeruginosa and characterize its biological and genomic properties of phages for future development as phage therapy. [Methods] Environmental water samples were collected, and phages were isolated using double agar overlay plaque assay. The morphology, one-step growth curve, optimal multiplicity of infection and other biological characteristics of phages were studied. Phage genome was sequenced using the Illumina MiSeq sequencing platform. Newbler 3.0, GeneMarkS, BlASTp, and Mauve 2.4.0 were used for genome annotation, comparative genomics and evolutionary analyses. [Results] A new phage, PHW2, which is a member of Myoviridae, was isolated from pond water. It is able to lyse seven carbapenem-resistant P. aeruginosa clinical isolates. The optimal multiplicity of infection (MOI) is 0.1. In addition, one step growth curve showed that the latent period and rise period of PHW2 was 100 min and 360 min, respectively. The burst size was about 25 PFU/cell. The phage PHW2 was stable in the temperature of 25-50℃ and pH 6.0-8.0. The activity of PHW2 decreased significantly after UV irradiation for 7 min. Moreover, it was shown that the activity of PHW2 is unaffected after treatment with 5% chloroform for 100 min. The genome of PHW2 is 65 984 bp, with GC content of 55.69% and comprises of 92 ORFs. tRNAscan-SE analysis indicated that phage PHW2 does not possess tRNAs. The genome of PHW2 had high similarity with other PB1-like phages. Phage PHW2 inhibited the biofilm formation of P. aeruginosa PA001 within 24 h. [Conclusion] We isolated PHW2, a new PB1-like phage that shows potent lytic effect against several carbapenem-resistant P. aeruginosa clinical isolates. Biological characteristics and the in vitro biofilm test indicated that the phage has the potential to be used as a biological agent to control nosocomial multidrug resistant P. aeruginosa infections.

    Reference
    [1] Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN. Geographic and temporal patterns of antimicrobial resistance in Pseudomonas aeruginosa over 20 years from the SENTRY antimicrobial surveillance program, 1997-2016[J]. Open Forum Infectious Diseases, 2019, 6(Suppl 1):S63-S68
    [2] 2018 National Bacterial Resistance Surveillance Report[J]. Chinese Journal of Rational Drug Use, 2020, 17(1):1-10(in Chinese) 2018年全国细菌耐药监测报告[J]. 中国合理用药探索, 2020, 17(1):1-10
    [3] Shrivastava S, Shrivastava P, Ramasamy J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics[J]. Journal of Medical Society, 2018, 32(1):76
    [4] Lin DM, Koskella B, Lin HC. Phage therapy:an alternative to antibiotics in the age of multi-drug resistance[J]. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8(3):162-173
    [5] Yang YH, Le S. Progress on Pseudomonas aeruginosa bacteriophage therapy[J]. Chinese Journal of Antibiotics, 2017, 42(10):814-820(in Chinese)杨雨卉, 乐率. 铜绿假单胞菌噬菌体治疗的研究进展[J]. 中国抗生素杂志, 2017, 42(10):814-820
    [6] Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms:a review[J]. Annals of Clinical Microbiology and Antimicrobials, 2020, 19(1):45
    [7] Bao HD, Zhu SJ, Zhang H, Zhou Y, Zhang XH, Pang MD, Sun LC, Li W, Wang R. Screening, identification and pathogenicity of phage-resistant strain of Salmonella[J]. Acta Microbiologica Sinica, 2020, 60(4):759-768(in Chinese)包红朵, 朱树娇, 张辉, 周艳, 张旭晖, 庞茂达, 孙利厂, 李维, 王冉. 沙门菌噬菌体抗性菌的筛选鉴定及致病力研究[J]. 微生物学报, 2020, 60(4):759-768
    [8] Gordillo Altamirano FL, Barr JJ. Phage therapy in the postantibiotic era[J]. Clinical Microbiology Reviews, 2019. DOI:10.1128/cmr.00066-18
    [9] Li CH, Wu AH. Multidrug resistant, extensively drug-resistant and pandrug-resistant bacteria:an international expert proposal for interim standard definitions for acquioed resistance[J]. Chinese Journal of Infection Control, 2014, 13(1):62-64(in Chinese)李春辉, 吴安华. MDR、XDR、PDR多重耐药菌暂行标准定义:国际专家建议[J]. 中国感染控制杂志, 2014, 13(1):62-64
    [10] Beeton ML, Alves DR, Enright MC, Jenkins ATA. Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model[J]. International Journal of Antimicrobial Agents, 2015, 46(2):196-200
    [11] Kutter E. Phage host range and efficiency of plating[J]. Methods in Molecular Biology, 2009, 501:141-149
    [12] Hyman P, Abedon ST. Practical Methods for Determining Phage Growth Parameters[M]. Bacteriophages, 2009. DOI:10.1007/978-1-60327-164-6_18
    [13] Cai JP, Sun LY. Isolation and characterization of bacteriophages of Vibrio cholera from the red tide waters in Shenzhen[J]. Microbiology China, 2010, 37(1):12-18(in Chinese)蔡俊鹏, 孙丽滢. 深圳赤潮中霍乱弧菌噬菌体的分离筛选及生物学特性分析[J]. 微生物学通报, 2010, 37(1):12-18
    [14] Chen LK, Liu YL, Hu AR, Chang KC, Lin NT, Lai MJ, Tseng CC. Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii[J]. BMC Microbiology, 2013, 13(1):1-10
    [15] Yang Y, Li X, Zhang YW, Liu JH, Hu XX, Nie TY, Yang XY, Wang XK, Li CR, You XF. Characterization of a hypervirulent multidrug-resistant ST23Klebsiella pneumoniae carrying a blaCTX-M-24 IncFII plasmid and a pK2044-like plasmid[J]. Journal of Global Antimicrobial Resistance, 2020, 22:674-679
    [16] Lowe TM, Chan PP. tRNAscan-SE On-line:integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Research, 2016, 44(W1):W54-W57
    [17] Darling ACE, Mau B, Blattner FR, Perna NT. Mauve:multiple alignment of conserved genomic sequence with rearrangements[J]. Genome Research, 2004, 14(7):1394-1403
    [18] Kalatzis PG, Bastías R, Kokkari C, Katharios P. Isolation and characterization of two lytic bacteriophages, φSt2 and φGrn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds[J]. PLoS One, 2016, 11(3):e0151101
    [19] Zeng L, Qiu DQ, Xie JH, Yu G. A study of the biochemical characteristics of the Vibrio alginolyticus bacteriophage[J]. Journal of Guangdong Ocean University, 2012, 32(1):24-29(in Chinese)曾林, 邱德全, 谢警鸿, 于鸽. 一株溶藻弧菌噬菌体的生理特性研究[J]. 广东海洋大学学报, 2012, 32(1):24-29
    [20] Li M, Shen XD, Zhou YB, Huang JJ, Hu XM, Rao XC, Hu FQ. Study on biological characteristics of Pseudomonas aeruginosa phage PaP1[J]. Acta Academiae Medicinae Militaris Tertiae, 2005, 27(9):860-863(in Chinese)李明, 申晓冬, 周莹冰, 黄建军, 胡晓梅, 饶贤才, 胡福泉. 铜绿假单胞菌噬菌体PaP1生物学特性的研究[J]. 第三军医大学学报, 2005, 27(9):860-863
    [21] Zhang L, Le S, Lu SG, Yao XY, Zhao Y, Wang J, Tan YL, Hu FQ, Li M. Isolation and identification a novel Pseudomonas aeruginosa phage PaP4[J]. Microbiology China, 2013, 40(4):609-616(in Chinese)张琳, 乐率, 卢曙光, 姚新月, 赵岩, 王竞, 谭银玲, 胡福泉, 李明. 铜绿假单胞菌噬菌体PaP4的分离与鉴定[J]. 微生物学通报, 2013, 40(4):609-616
    [22] Song ZF, Xu HD, Peng MF, Sun BC, Zhao Z, Zhang Y, Ren JF, Zhang QH. Isolation and identification of two lytic phages against Vibrio parahaemolyticus[J]. Acta Hydrobiologica Sinica, 2017, 41(4):793-799(in Chinese)宋增福, 徐华东, 彭孟凡, 孙博超, 赵政, 张也, 任建峰, 张庆华. 两株副溶血弧菌烈性噬菌体的分离鉴定[J]. 水生生物学报, 2017, 41(4):793-799
    [23] Li MY, Wang JL, Wei YL, Lu LL, Ji XL. Biological characteristics of three Flavobacterium cold-active bacteriophages from mingyong glacier[J]. Life Science Research, 2014, 18(2):114-120(in Chinese)李明源, 王继莲, 魏云林, 卢磊磊, 季秀玲. 明永冰川三株黄杆菌低温噬菌体的生物学特性研究[J]. 生命科学研究, 2014, 18(2):114-120
    [24] Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC, Jenkins ATA. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions[J]. Microbial Biotechnology, 2016, 9(1):61-74
    [25] Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells[J]. mBio, 2012, 3(2):e00029-12
    [26] Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato SI, Morita T, Muraoka A, Sumi T, Matsuzaki S, Daibata M, et al. Pseudomonas aeruginosa keratitis in mice:effects of topical bacteriophage KPP12 administration[J]. PLoS One, 2012, 7(10):e47742
    [27] Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D, et al. Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm[J]. PLoS One, 2015, 10(5):e0127603
    [28] Alvi IA, Asif M, Ur Rehman S. A single dose of a virulent bacteriophage vB PaeP-SaPL, rescues bacteremic mice infected with multi drug resistant Pseudomonas aeruginosa[J]. Virus Research, 2021, 292:198250
    [29] Liu YN, Tong YG, Mi ZQ, Li PY, Bai CQ. Progress in the research of bacteriophage disrupting biofilms[J]. Chinese Journal of Antibiotics, 2017, 42(10):821-826(in Chinese)刘艳楠, 童贻刚, 米志强, 李璞媛, 柏长青. 噬菌体作用细菌生物被膜的研究进展[J]. 中国抗生素杂志, 2017, 42(10):821-826
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Zhiying, JIN Zeyuan, LI Wanxia, ZENG Fei, ZHU Mingzhuo, CHEN Shaoxian, PENG Wenyi, XU Yanping, TONG Yigang, BAI Qinqin. Characterization of a PB1-like phage PHW2 infecting Pseudomonas aeruginosa[J]. Microbiology China, 2021, 48(9): 3205-3217

Copy
Share
Article Metrics
  • Abstract:542
  • PDF: 1173
  • HTML: 1068
  • Cited by: 0
History
  • Received:March 01,2021
  • Adopted:July 06,2021
  • Online: September 08,2021
Article QR Code