Antibacterial applications of nano-enzymes
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [62]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The discovery and use of antibiotics provide us a powerful weapon against bacterial infection. However, the long-term use of antibiotics leads to bacterial resistance and limits their clinical applications. Fortunately, the rapid development of nanotechnology provides new ways to solve the problem. In this review, nano-enzymes were classified into two types:one is "the composites of enzyme and nanomaterial", another is "the nanomaterials possessing enzyme-mimic activities-named as nanozymes". To the best of our knowledge, Ag nanoparticles have been widely studied as nano-antibacterial agents and their antibacterial mechanisms are diverse. Therefore, the antibacterial mechanism and the latest progress of Ag nanoparticles as nano antibacterial agents are discussed. Compared to natural enzymes, the nanozyme-based antibacterial agent can integrate more than one strategy to yield synergistic effects and thus increase their bacterial killing efficacies. Therefore, in this review, we focus on recent progress in the design and mechanism of nanozyme-based antibacterial agents including the Ag nanoparticles, composites of enzymes and nanomaterials and nanoparticles possess enzyme mimic activities (nanozymes). Finally, the current challenges and an outlook for the development of more effective and safer antibacterial nano-enzymes are also included.

    Reference
    [1] World Health Organization, Moja L. Antibacterial agents in clinical development:an analysis of the antibacterial clinical development pipeline, including tuberculosis[J]. World Health Organization, 2017
    [2] Fang Y. Construction and antibacterial properties of POM-based nanocomposite system[D]. Kaifeng:Master's Thesis of Henan University, 2019(in Chinese)方颜. 多酸基纳米复合材料的构建及抗菌性能研究[D]. 开封:河南大学硕士学位论文, 2019
    [3] Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJAM, Zaat SAJ, Schultz MJ, Grainger DW. Biomaterial-associated infection:locating the finish line in the race for the surface[J]. Science Translational Medicine, 2012, 4(153):153rv10
    [4] Liu Y, Shi LQ, Su LZ, Van Der Mei HC, Jutte PC, Ren YJ, Busscher HJ. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J]. Chemical Society Reviews, 2019, 48(2):428-446
    [5] Theuretzbacher U, Piddock LJV. Non-traditional antibacterial therapeutic options and challenges[J]. Cell Host & Microbe, 2019, 26(1):61-72
    [6] Chen JL, Liu W, Wang LL, Shang F, Chen YY, Lan J, Gao P, Ha NC, Quan CS, Nam KH, et al. Crystal structure of Aeromonas hydrophila cytoplasmic 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase[J]. Biochemistry, 2019, 58(29):3136-3143
    [7] Zhao J, Li XY, Hou XY, Quan CS, Chen M. Widespread existence of quorum sensing inhibitors in marine bacteria:potential drugs to combat pathogens with novel strategies[J]. Marine Drugs, 2019, 17(5):275
    [8] Zhang LY, Quan CS, Zhang XN, Xiong W, Fan SD. Proteoliposome-based model for screening inhibitors targeting histidine kinase AgrC[J]. Chemical Biology & Drug Design, 2019, 93(5):712-723
    [9] Chen JL, Shang F, Wang LL, Zou LH, Bu TT, Jin LM, Dong YS, Ha NC, Quan CS, Nam KH, et al. Structural and biochemical analysis of the citrate-responsive mechanism of the regulatory domain of catabolite control protein E from Staphylococcus aureus[J]. Biochemistry, 2018, 57(42):6054-6060
    [10] Quan CS, Zhang XN, Jin LM, Zhang LY, Zhao J, Fan SD. Construction and evaluation of AgrA/C two component signal transduction model of Staphylococcus aureus[J]. Microbiology China, 2018, 45(4):856-865(in Chinese)权春善, 张旭宁, 金黎明, 张丽影, 赵晶, 范圣第. 金黄色葡萄球菌AgrA/C双组分信号转导模型的构建与功能评价[J]. 微生物学通报, 2018, 45(4):856-865
    [11] Zhao J, Quan CS, Jin LM, Chen M. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria[J]. Journal of Biotechnology, 2018, 268:53-60
    [12] Sun L, Mao JS, Zhao Y, Quan CS, Zhong ML, Fan SD. Coarse-grained molecular dynamics simulation of interactions between cyclic lipopeptide Bacillomycin D and cell membranes[J]. Molecular Simulation, 2018, 44(5):364-376
    [13] Xiong W, Quan CS, Zhang XN, Wang LN, Liu BQ, Jin LM, Fan SD. Quantitative analysis of protein orientation in membrane environments by kinase activity[J]. Journal of Bioscience and Bioengineering, 2016, 121(2):242-246
    [14] Wang Y, Yang YN, Shi YR, Song H, Yu CZ. Antibiotic-free antibacterial strategies enabled by nanomaterials:progress and perspectives[J]. Advanced Materials:Deerfield Beach, Fla, 2020, 32(18):e1904106
    [15] Durán N, Durán M, De Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles:a new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2016, 12(3):789-799
    [16] Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, et al. Metal-based nanoparticles as antimicrobial agents:an overview[J]. Nanomaterials, 2020, 10(2):292
    [17] Shen MF, Forghani F, Kong XQ, Liu DH, Ye XQ, Chen SG, Ding T. Antibacterial applications of metal-organic frameworks and their composites[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4):1397-1419
    [18] Zhang YM, Zhang X, Song J, Jin LM, Wang XT, Quan CS. Ag/H-ZIF-8 nanocomposite as an effective antibacterial agent against pathogenic bacteria[J]. Nanomaterials, 2019, 9(11):E1579
    [19] Tang Y, Qiu ZY, Xu ZB, Gao LZ. Antibacterial mechanism and applications of nanozymes[J]. Progress in Biochemistry and Biophysics, 2018, 45(2):118-128(in Chinese)唐燕, 仇智月, 许卓斌, 高利增. 纳米酶的抗菌机理与应用[J]. 生物化学与生物物理进展, 2018, 45(2):118-128
    [20] Huh AJ, Kwon YJ. "Nanoantibiotics":a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. Journal of Controlled Release, 2011, 156(2):128-145
    [21] Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez De Aberasturi D, De Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10):499-511
    [22] Wu TT, Wu CH, Fu SL, Wang LP, Yuan CH, Chen SG, Hu YQ. Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity[J]. Carbohydrate Polymers, 2017, 155:192-200
    [23] Tasia W, Lei C, Cao YX, Ye QS, He Y, Xu C. Enhanced eradication of bacterial biofilms with DNase I-loaded silver-doped mesoporous silica nanoparticles[J]. Nanoscale, 2020, 12(4):2328-2332
    [24] Vedarethinam V, Huang L, Xu W, Zhang R, Gurav DD, Sun XM, Yang J, Chen RP, Qian K. Detection and inhibition of bacteria on a dual-functional silver platform[J]. Small, 2019, 15(3):e1803051
    [25] Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles:understanding the mechanisms behind antibacterial activity[J]. Journal of Nanobiotechnology, 2017, 15(1):65
    [26] Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices:mechanisms, methodological drawbacks, and guidelines[J]. Chemical Society Reviews, 2014, 43(5):1501-1518
    [27] Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Reactive oxygen species (ROS) and wound healing:the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process[J]. International Wound Journal, 2017, 14(1):89-96
    [28] Wakshlak RacheliBK, Pedahzur R, Avnir D. Antibacterial activity of silver-killed bacteria:the "zombies" effect[J]. Scientific Reports, 2015, 5:9555
    [29] Tian X, Jiang XM, Welch C, Croley TR, Wong TY, Chen C, Fan SH, Chong Y, Li RB, Ge CC, et al. Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism[J]. ACS Applied Materials & Interfaces, 2018, 10(10):8443-8450
    [30] Liao XW, Yang F, Li HY, So PK, Yao ZP, Xia W, Sun HZ. Targeting the thioredoxin reductase-thioredoxin system from Staphylococcus aureus by silver ions[J]. Inorganic Chemistry, 2017, 56(24):14823-14830
    [31] Wang HB, Wang MJ, Yang XM, Xu XH, Hao Q, Yan AX, Hu ML, Lobinski R, Li HY, Sun HZ. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli[J]. Chemical Science, 2019, 10(30):7193-7199
    [32] Cao FF, Ju EG, Zhang Y, Wang ZZ, Liu CQ, Li W, Huang YY, Dong K, Ren JS, Qu XG. An efficient and benign antimicrobial depot based on silver-infused MoS2[J]. ACS Nano, 2017, 11(5):4651-4659
    [33] Wu YY, Zhang LL, Zhou YZ, Zhang LL, Li Y, Liu QQ, Hu J, Yang J. Light-induced ZnO/Ag/rGO bactericidal photocatalyst with synergistic effect of sustained release of silver ions and enhanced reactive oxygen species[J]. Chinese Journal of Catalysis, 2019, 40(5):691-702
    [34] Wang Z, Yu H, Ma K, Chen YZ, Zhang XQ, Wang TX, Li SB, Zhu XQ, Wang XF. Flower-like surface of three-metal-component layered double hydroxide composites for improved antibacterial activity of lysozyme[J]. Bioconjugate Chemistry, 2018, 29(6):2090-2099
    [35] Song H, Ahmad Nor Y, Yu MH, Yang YN, Zhang J, Zhang HW, Xu C, Mitter N, Yu CZ. Silica nanopollens enhance adhesion for long-term bacterial inhibition[J]. Journal of the American Chemical Society, 2016, 138(20):6455-6462
    [36] Baelo A, Levato R, Julián E, Crespo A, Astola J, Gavaldà J, Engel E, Mateos-Timoneda MA, Torrents E. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections[J]. Journal of Controlled Release, 2015, 209:150-158
    [37] Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2(9):577-583
    [38] Yan XY. Nanozyme:a new type of artificial enzyme[J]. Progress in Biochemistry ?灮牤漠灂敩牯瑰楨敹獳孩?嵳???渰漱爸本愠渴椵挨愲??栱椰洱椭挱愰??捩瑮愠???の?????㈡??ㄠ???????抺狥?察??嵊?堮甠?????土慩湩朆????圲愰渱朸?圠圴???愩漺??娱???椴?卢卲??倳愹湝?塗呵??圬愠湗条??夠??夬愠湗条??????敌湯杵?塚児??坌畩?兓坒??敚瑨?愠汙????獩楮渠杌氬攠?慥瑩漠浈?渠慎湡潮穯祭浡整?晲潩牡?睳漠畷湩摴?搠楥獮楺湹晭敥挭瑬楩潫湥?慣灨灡汲楡捣慴瑥楲潩湳獴孩?嵳???湡杮敯睺慹湭摥瑳攩??桥數浴椭敧??湥瑲敡牴湩慯瑮椠潡湲慴汩??摣楩瑡楬漠湥???ね?????????????????????打牯?孩??嵹?婒桥慶湩来????娲栰愱漹?夠場???愩漺?夰????愰漷??偢? ̄?愴渰?夠午???楧?塙????略慮渠?婓夬??坵愠湘杇?????湯瑺楹?扥慳挺瑣敬牡楳慳汩?慩湣摡??楯?椬渠?癡楴癡潬??楩??瑭略浣潨牡?瑩牳敭慳琬洠敡湣瑴?扶祩?特攠慲捥瑧極癬敡?潩硯祮本攠湡?獤瀠敡捰楰敬獩?条整湩敯牮慳瑛敊摝?戠祃?浥慭杩湣敡瑬椠捒?湶慩湥潷灳愬爠琲椰挱氹攬猠嬱?崹???漺甴爳渵愷氭?漴昱′?慢瑲放牛椴愱汝猠??桡敮浧椠獍瑍爬礠?????す????????????てひ??ㄠの??戠牣?孮?づ嵰?即栬愠湭??奨???楳?塳??奡慮湤朠?????塡楲畤?圠???坡数湰?兩剣??婩桯慮湳杛?奝儮??奣畣睯敵湮?????圠敃湨来??塣??吠敒湥杳?婡???圬愠渲朰????‵?昨昸椩挺椲攱渹琰?戲愲挰琰攼牢楲愾?欴椲汝氠楗湡杮?戠祈??畗?獮甠手?水??獨畩戠?坈匮?獒略扣????獡畤扶??湣慥湳漠捩牮礠獮瑡慮汯獺?睭楥琠桲?敳湥穡祲浣敨?汊楝欮攠?灤牶潡灮散牥瑤椠敍獡?慥湲摩?扬慳挺瑄敥牥楲慦?扥楬湤搠楂湥条?慨戬椠汆楬瑡礬嬠?崰????匳?丨愴渵漩??㈱?????????资???????????げ?, Fan KL, Yan XY. Nanozymes:created by learning from nature[J]. Science China Life Sciences, 2020, 63(8):1183-1200
    [44] Li ZX, Feng KZ, Zhang W, Ma M, Gu N, Zhang Y. Catalytic mechanism and application of nanozymes[J]. Chinese Science Bulletin, 2018, 63(21):2128-2139(in Chinese)李卓轩, 封开政, 张薇, 马明, 顾宁, 张宇. 纳米酶的催化机制及应用[J]. 科学通报, 2018, 63(21):2128-2139
    [45] Zhang YM, Song J, Pan QL, Zhang X, Shao WH, Zhang X, Quan CS, Li J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+[J]. Journal of Materials Chemistry B, 2020, 8(1):114-124
    [46] Zhang YM, Song J, Shao WH, Li J. Au@NH2-MIL-125(Ti) heterostructure as light-responsive oxidase-like mimic for colorimetric sensing of cysteine[J]. Microporous and Mesoporous Materials, 2021, 310:110642
    [47] Sun HJ, Zhou Y, Ren JS, Qu XG. Carbon nanozymes:enzymatic properties, catalytic mechanism, and applications[J]. Angewandte Chemie:International Ed in English, 2018, 57(30):9224-9237
    [48] Xin Q, Shah H, Nawaz A, Xie WJ, Akram MZ, Batool A, Tian LQ, Jan SU, Boddula R, Guo BD, et al. Antibacterial carbon-based nanomaterials[J]. Advanced Materials:Deerfield Beach, Fla, 2019, 31(45):e1804838
    [49] Ding LJ, Wang H, Liu D, Zeng XA, Mao YQ. Bacteria capture and inactivation with functionalized multi-walled carbon nanotubes (MWCNTs)[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4):2055-2062
    [50] Wang H, Li PH, Yu DQ, Zhang Y, Wang ZZ, Liu CQ, Qiu H, Liu Z, Ren JS, Qu XG. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections[J]. Nano Letters, 2018, 18(6):3344-3351
    [51] Lv Y, Ma MR, Huang YC, Xia YS. Carbon dot nanozymes:how to be close to natural enzymes[J]. Chemistry:Weinheim an Der Bergstrasse, Germany, 2019, 25(4):954-960
    [52] Sun HJ, Gao N, Dong K, Ren JS, Qu XG. Graphene quantum dots-band-aids used for wound disinfection[J]. ACS Nano, 2014, 8(6):6202-6210
    [53] Wang ZZ, Dong K, Liu Z, Zhang Y, Chen ZW, Sun HJ, Ren JS, Qu XG. Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection[J]. Biomaterials, 2017, 113:145-157
    [54] Huang YY, Lin YH, Pu F, Ren JS, Qu XG. The current progress of nanozymes in disease treatments[J]. Progress in Biochemistry and Biophysics, 2018, 45(2):256-267(in Chinese)黄燕燕, 林友辉, 蒲芳, 任劲松, 曲晓刚. 纳米酶在疾病治疗中的最新进展[J]. 生物化学与生物物理进展, 2018, 45(2):256-267
    [55] Deng G. Application of Fe-based nanoparticles in nanoenzyme and nuclear magnetic resonance imaging[D]. Shanghai:Master's Thesis of Shanghai Normal University, 2019(in Chinese)邓广. 铁基纳米粒子在纳米酶及核磁共振成像中的应用[D]. 上海:上海师范大学硕士学位论文, 2019
    [56] Song YJ, Qu KG, Zhao C, Ren JS, Qu XG. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Advanced Materials, 2010, 22(19):2206-2210
    [57] Zheng HZ, Ji ZX, Roy KR, Gao M, Pan YX, Cai XM, Wang LM, Li W, Chang CH, Kaweeteerawat C, et al. Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance[J]. ACS Nano, 2019, 13(10):11488-11499
    [58] Fang G. The study on facet-dependent activities of nanozymes and their biological applications[D]. Suzhou:Doctoral Dissertation of Soochow University, 2018(in Chinese)方舸. 晶面调控纳米酶活性及其生物应用研究[D]. 苏州:苏州大学博士学位论文, 2018
    [59] Cao FF, Zhang L, Wang H, You YW, Wang Y, Gao N, Ren JS, Qu XG. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition[J]. Angewandte Chemie, 2019, 58(45):16236-16242
    [60] Wang LL, Hu C, Shao LQ. The antimicrobial activity of nanoparticles:present situation and prospects for the future[J]. International Journal of Nanomedicine, 2017, 12:1227-1249
    [61] Fang G, Li WF, Shen XM, Perez-Aguilar JM, Chong Y, Gao XF, Chai ZF, Chen CY, Ge CC, Zhou RH. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria[J]. Nature Communications, 2018, 9:129
    [62] Wu RF. Study on enzymatic activity of Pt hollow nanodendrites and its application for wound disinfection[D]. Suzhou:Master's Thesis of Soochow University, 2018(in Chinese)吴仁飞. 铂中空纳米枝晶的类酶活性探索及其在伤口感染中的应用研究[D]. 苏州:苏州大学硕士学位论文, 2018
    [63] Ge CC, Wu RF, Chong Y, Fang G, Jiang XM, Pan Y, Chen CY, Yin JJ. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections:implication for wound healing[J]. Advanced Functional Materials, 2018, 28(28):1801484
    [64] Cai SF, Jia XH, Han QS, Yan XY, Yang R, Wang C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects[J]. Nano Research, 2017, 10(6):2056-2069
    [65] Tao Y, Ju EG, Ren JS, Qu XG. Bifunctionalized mesoporous silica-supported gold nanoparticles:intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Advanced Materials:Deerfield Beach, Fla, 2015, 27(6):1097-1104
    [66] Jiao L, Yan HY, Wu Y, Gu WL, Zhu CZ, Du D, Lin YH. When nanozymes meet single-atom catalysis[J]. Angewandte Chemie:International Ed in English, 2020, 59(7):2565-2576
    [67] Bhyrappa P, Sarangi UK, Varghese B. Mixed β-pyrrole substituted meso-tetraphenylporphyrins and their metal complexes:synthesis, structures and electrochemical redox
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Xin, MO Qiaomi, SHAO Wenhui, Lü Jiashun, HU Xin, LI Jun, ZHANG Yanmei, QUAN Chunshan. Antibacterial applications of nano-enzymes[J]. Microbiology China, 2021, 48(9): 3083-3094

Copy
Share
Article Metrics
  • Abstract:967
  • PDF: 2495
  • HTML: 3539
  • Cited by: 0
History
  • Received:September 09,2020
  • Adopted:January 19,2021
  • Online: September 08,2021
Article QR Code