Research progress of Cpx two-component system in bacteria
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Bacteria can grow in the environment that other microorganisms can't survive, so it must have more powerful ability to adapt to the external environment. The efficiency of cell signal transduction determines the rate and ability of bacteria to respond to external stimulus. Two-component system is an important structure to maintain the survival of bacteria under conditions of stress. Two-component system Cpx is widely distributed in Gram-negative bacteria, which plays a major role in responding to the changes of external environment and making adaptive response. In this paper, the types of two-component signal transduction system in bacteria, the regulation of Cpx two-component system, the regulated target genes by Cpx two-component system and their physiological behavior were briefly reviewed to provide ideas and theoretical guidance for further research.

    Reference
    [1] Xu XG, Zhang ZP, Cheng B. Progression on the research of two-component signal transduction system in fungus and its inhibitors[J]. Chinese Journal of Mycology, 2011, 6(6):370-372,380(in Chinese)徐西光, 张子平, 程波. 真菌双组分信号转导系统及其抑制剂研究进展[J]. 中国真菌学杂志, 2011, 6(6):370-372,380
    [2] Chauhan N, Calderone R. Two-component signal transduction proteins as potential drug targets in medically important fungi[J]. Infection and Immunity, 2008, 76(11):4795-4803
    [3] Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR. Evolution of two-component signal transduction[J]. Molecular Biology and Evolution, 2000, 17(12):1956-1970
    [4] Ahmad B, Azeem F, Ali MA, Nawaz MA, Nadeem H, Abbas A, Batool R, Atif RM, Ijaz U, Nieves-Cordones M, et al. Genome-wide identification and expression analysis of two component system genes in Cicer arietinum[J]. Genomics, 2020, 112(2):1371-1383
    [5] Desai C, Mavrianos J, Chauhan N. Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence[J]. Eukaryotic Cell, 2011, 10(10):1370-1374
    [6] Mavrianos J, Berkow EL, Desai C, Pandey A, Batish M, Rabadi MJ, Barker KS, Pain D, Rogers PD, Eugenin EA, et al. Mitochondrial two-component signaling systems in Candida albicans[J]. Eukaryotic Cell, 2013, 12(6):913-922
    [7] Nixon BT, Ronson CW, Ausubel FM. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(20):7850-7854
    [8] Ninfa AJ, Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(16):5909-5913
    [9] Hess JF, Oosawa K, Matsumura P, Simon MI. Protein phosphorylation is involved in bacterial chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(21):7609-7613
    [10] Marijuán PC, Navarro J, Del Moral R. On prokaryotic intelligence:strategies for sensing the environment[J]. Biosystems, 2010, 99(2):94-103
    [11] Hoch JA. Two-component and phosphorelay signal transduction[J]. Current Opinion in Microbiology, 2000, 3(2):165-170
    [12] Li M, Hu FQ, Tang JQ. Dual signal transduction system and bacterial pathogenicity[J]. Journal of Microbiology, 2007, 27(1):50-54(in Chinese)李明, 胡福泉, 唐家琪. 二元信号转导系统与细菌的致病性[J]. 微生物学杂志, 2007, 27(1):50-54
    [13] Ying BW, Yama K. Gene expression order attributed to genome reduction and the steady cellular state in Escherichia coli[J]. Frontiers in Microbiology, 2018, 9:2255
    [14] Held NA, McIlvin MR, Moran DM, Laub MT, Saito MA. Unique patterns and biogeochemical relevance of two-component sensing in marine bacteria[J]. mSystems, 2019, 4(1):e00317-18
    [15] Scharf BE, Aldridge PD, Kirby JR, Crane BR. Upward mobility and alternative lifestyles:a report from the 10th biennial meeting on Bacterial Locomotion and Signal Transduction[J]. Molecular Microbiology, 2009, 73(1):5-19
    [16] Thomas L, Cook L. Two-component signal transduction systems in the human pathogen Streptococcus agalactiae[J]. Infection and Immunity, 2020, 88(7):e00931-19
    [17] Mitchell AM, Silhavy TJ. Envelope stress responses:balancing damage repair and toxicity[J]. Nature Reviews Microbiology, 2019, 17(7):417-428
    [18] McEwen J, Silverman P. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(1):513-517
    [19] Albin R, Weber R, Silverman PM. The Cpx proteins of Escherichia coli K12. Immunologic detection of the chromosomal cpxA gene product[J]. Journal of Biological Chemistry, 1986, 261(10):4698-4705
    [20] Dong JM, Shiro L, Hoi-Shan K, Lu Z, Lin ECC. The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia coli[J]. Gene, 1993, 136(1/2):227-230
    [21] Xu X, Zhou XH, He XL. Cpx two-component regulatory system in Gram-negative bacteria:a review[J]. Acta Microbiologica Sinica, 2014, 54(3):269-275(in Chinese)徐乐, 周晓辉, 何晓亮. 革兰氏阴性菌的Cpx双组分调控系统[J]. 微生物学报, 2014, 54(3):269-275
    [22] Cho H, Choi Y, Min K, Son JB, Park H, Lee HH, Kim S. Over-activation of a nonessential bacterial protease DegP as an antibiotic strategy[J]. Communications Biology, 2020, 3:547
    [23] Guest RL, Wang JS, Wong JL, Raivio TL. A bacterial stress response regulates respiratory protein complexes to control envelope stress adaptation[J]. Journal of Bacteriology, 2017, 199(20):e00153-e00117
    [24] Hunke S, Keller R, Müller VS. Signal integration by the Cpx-envelope stress system[J]. FEMS Microbiology Letters, 2012, 326(1):12-22
    [25] Subramaniam S, Müller VS, Hering NA, Mollenkopf H, Becker D, Heroven AK, Dersch P, Pohlmann A, Tedin K, Porwollik S, et al. Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar typhimurium[J]. PLoS One, 2019, 14(2):e0211584
    [26] Danese PN, Silhavy TJ. CpxP, a stress-combative member of the Cpx regulon[J]. Journal of Bacteriology, 1998, 180(4):831-839
    [27] Keller R, Ariöz C, Hansmeier N, Stenberg-Bruzell F, Burstedt M, Vikström D, Kelly A, Wieslander Å, Daley DO, Hunke S. The Escherichia coli envelope stress sensor CpxA responds to changes in lipid bilayer properties[J]. Biochemistry, 2015, 54(23):3670-3676
    [28] Delhaye A, Laloux G, Collet JF. The lipoprotein NlpE is a cpx sensor that serves as a sentinel for protein sorting and folding defects in the Escherichia coli envelope[J]. Journal of Bacteriology, 2019, 201(10):e00611-18
    [29] DiGiuseppe PA, Silhavy TJ. Signal detection and target gene induction by the CpxRA two-component system[J]. Journal of Bacteriology, 2003, 185(8):2432-2440
    [30] Otto K, Silhavy TJ. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4):2287-2292
    [31] Fleischer R, Heermann R, Jung K, Hunke S. Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli[J]. Journal of Biological Chemistry, 2007, 282(12):8583-8593
    [32] Dbeibo L, Van Rensburg JJ, Smith SN, Fortney KR, Gangaiah D, Gao HY, Marzoa J, Liu YL, Mobley HLT, Spinola SM. Evaluation of CpxRA as a therapeutic target for uropathogenic Escherichia coli infections[J]. Infection and Immunity, 2018, 86(3):e00798-e00717
    [33] Grabowicz M, Silhavy TJ. Envelope stress responses:an interconnected safety net[J]. Trends in Biochemical Sciences, 2017, 42(3):232-242
    [34] Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ. Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates degP transcription in Escherichia coli[J]. Journal of Bacteriology, 1998, 180(22):5875-5884
    [35] Isaac DD, Pinkner JS, Hultgren SJ, Silhavy TJ. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(49):17775-17779
    [36] Debnath I, Norton JP, Barber AE, Ott EM, Dhakal BK, Kulesus RR, Mulvey MA. The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli[J]. Infection and Immunity, 2013, 81(5):1450-1459
    [37] Acosta N, Pukatzki S, Raivio TL. The Cpx system regulates virulence gene expression in Vibrio cholerae[J]. Infection and Immunity, 2015, 83(6):2396-2408
    [38] Tremblay YD, Deslandes V, Jacques M. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus[J]. BMC Genomics, 2013, 14(1):364
    [39] Hathroubi S, Hancock MA, Bossé JT, Langford PR, Tremblay YDN, Labrie J, Jacques M. Surface polysaccharide mutants reveal that absence of O antigen reduces biofilm formation of Actinobacillus pleuropneumoniae[J]. Infection and Immunity, 2016, 84(1):127-137
    [40] Li H, Liu F, Peng W, Yan K, Zhao HX, Liu T, Cheng H, Chang PX, Yuan FY, Chen HC, et al. The CpxA/CpxR two-component system affects biofilm formation and virulence in Actinobacillus pleuropneumoniae[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8:72
    [41] Bossé JT, Sinha S, Li MS, O'Dwyer CA, Nash JH, Rycroft AN, Kroll JS, Langford PR. Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS[J]. Journal of Bacteriology, 2010, 192(9):2414-2423
    [42] Hathroubi S, Loera-Muro A, Guerrero-Barrera AL, Tremblay YDN, Jacques M. Actinobacillus pleuropneumoniae biofilms:role in pathogenicity and potential impact for vaccination development[J]. Animal Health Research Reviews, 2018, 19(1):17-30
    [43] Menzel A, Beyerbach M, Siewert C, Gundlach M, Hoeltig D, Graage R, Seifert H, Waldmann KH, Verspohl J, Hennig-Pauka I. Actinobacillus pleuropneumoniae challenge in swine:diagnostic of lung alterations by infrared thermography[J]. BMC Veterinary Research, 2014, 10:199
    [44] Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges[J]. Transboundary and Emerging Diseases, 2018, 65(Suppl 1):72-90
    [45] Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(6):2038-2049
    [46] Nakayama S, Watanabe H. Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene[J]. Journal of Bacteriology, 1995, 177(17):5062-5069
    [47] Surmann K, Ćudić E, Hammer E, Hunke S. Molecular and proteome analyses highlight the importance of the Cpx envelope stress system for acid stress and cell wall stability in Escherichia coli[J]. Micr湯?漀昀?匀愀氀洀漀渀攀氀氀愀?攀渀琀攀爀椀挀愀?猀攀爀漀瘀愀爀?琀礀瀀栀椀洀甀爀椀甀洀?愀渀搀?琀栀甀猀?瀀爀漀洀漀琀攀?椀琀猀?愀挀琀椀瘀愀琀椀漀渀?戀礀?伀洀瀀刀嬀?崀???漀甀爀渀愀氀?漀昀??愀挀琀攀爀椀漀氀漀最礀??? ????? ?????攀  ?? ?攀  ????戀爀?嬀??崀?刀甀椀稀?????挀?甀爀爀礀??????攀瘀礀?匀???刀漀氀攀?漀昀?琀栀攀?洀甀氀琀椀搀爀甀最?爀攀猀椀猀琀愀渀挀攀?爀攀最甀氀愀琀漀爀??愀爀??椀渀?最氀漀戀愀氀?爀攀最甀氀愀琀椀漀渀?漀昀?琀栀攀?栀搀攀???愀挀椀搀?爀攀猀椀猀琀愀渀挀攀?漀瀀攀爀漀渀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???漀甀爀渀愀氀?漀昀??愀挀琀攀爀椀漀氀漀最礀???  ????? ??????? ??????戀爀?嬀??崀??最甀挀栀椀?夀??唀琀猀甀洀椀?刀???氀欀愀氀椀?洀攀琀愀氀猀?椀渀?愀搀搀椀琀椀漀渀?琀漀?愀挀椀搀椀挀?瀀??愀挀琀椀瘀愀琀攀?琀栀攀??瘀最匀?栀椀猀琀椀搀椀渀攀?欀椀渀愀猀攀?猀攀渀猀漀爀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???漀甀爀渀愀氀?漀昀??愀挀琀攀爀椀漀氀漀最礀??? ??????????????? ??????戀爀?嬀??崀?伀最愀猀愀眀愀爀愀?????愀猀攀最愀眀愀?????愀渀搀愀??????椀欀椀?吀??夀愀洀愀洀漀琀漀?????猀栀椀栀愀洀愀?????攀渀漀洀椀挀?匀???堀?猀攀愀爀挀栀?昀漀爀?琀愀爀最攀琀?瀀爀漀洀漀琀攀爀猀?甀渀搀攀爀?琀栀攀?挀漀渀琀爀漀氀?漀昀?琀栀攀?倀栀漀儀倀?刀猀琀???猀椀最渀愀氀?爀攀氀愀礀?挀愀猀挀愀搀攀嬀?崀???漀甀爀渀愀氀?漀昀??愀挀琀攀爀椀漀氀漀最礀???  ?????????????????????戀爀?嬀??崀?夀愀漀?夀???愀渀?????匀栀椀?夀堀??伀搀猀戀甀?????漀爀椀最攀渀????猀瀀愀琀椀愀氀?挀漀渀琀爀漀氀?昀漀爀?挀漀爀爀攀挀琀?琀椀洀椀渀最?漀昀?最攀渀攀?攀砀瀀爀攀猀猀椀漀渀?搀甀爀椀渀最?琀栀攀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀?挀攀氀氀?挀礀挀氀攀嬀?崀???攀渀攀猀??? ???????????戀爀?嬀? 崀??漀爀搀椀????吀栀??????爀愀甀氀愀稀???????????樀攀愀渀?嘀???漀甀爀氀椀渀??愀猀琀攀氀氀椀?????渀琀椀挀椀瀀愀琀椀渀最?愀渀?愀氀欀愀氀椀渀攀?猀琀爀攀猀猀?琀栀爀漀甀最栀?琀栀攀?吀漀爀?瀀栀漀猀瀀栀漀爀攀氀愀礀?猀礀猀琀攀洀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???漀氀攀挀甀氀愀爀??椀挀爀漀戀椀漀氀漀最礀???  ?????????????????戀爀?嬀??崀?娀栀愀漀?匀夀??娀栀愀渀最??一???椀愀渀最?匀娀???椀甀?娀???圀愀渀最?娀???圀愀渀最?夀圀???椀甀????刀攀猀漀渀愀渀挀攀?愀猀猀椀最渀洀攀渀琀猀?漀昀?猀椀最洀愀?昀愀挀琀漀爀?匀?戀椀渀搀椀渀最?瀀爀漀琀攀椀渀??爀氀?昀爀漀洀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???椀漀洀漀氀攀挀甀氀愀爀?一?刀??猀猀椀最渀洀攀渀琀猀??? ??????????????????戀爀?嬀??崀?儀椀愀漀??堀???愀渀?????夀愀漀?夀??吀栀攀?洀漀氀攀挀甀氀愀爀?洀攀挀栀愀渀椀猀洀?漀昀?猀攀渀猀椀渀最?愀渀搀?愀搀愀瀀琀椀渀最?琀漀?愀挀椀搀?愀渀搀?戀愀猀攀?猀琀爀攀猀猀?椀渀????挀漀氀椀嬀?崀???栀椀渀攀猀攀??漀甀爀渀愀氀?漀昀??椀漀挀栀攀洀椀猀琀爀礀?愀渀搀??漀氀攀挀甀氀愀爀??椀漀氀漀最礀??? ????????????????椀渀??栀椀渀攀猀攀?吀獎歏???????????????鞃硢??荳葘?偒??孒?崀?????極?晓??偒?極晲???? ????????????????戀爀?嬀??崀?夀愀漀?夀??儀椀愀漀??堀???椀?????椀?????漀爀椀最攀渀??吀栀攀?攀昀昀攀挀琀猀?漀昀?吀漀爀刀?瀀爀漀琀攀椀渀?漀渀?椀渀椀琀椀愀琀椀漀渀?漀昀??一??爀攀瀀氀椀挀愀琀椀漀渀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???攀爀攀搀椀琀愀猀??? ??????????? ??? ??椀渀??栀椀渀攀猀攀?????吀獎歏??一奧??一杧??????????咃漀爀匀?吀漀爀刀谀??卒鑏呞?綆呶漀爀刀豈?一???睒?葙煶?孔?崀??圀???? ??????????? ??? ??戀爀?嬀??崀??椀礀愀欀攀?夀??夀愀洀愀洀漀琀漀?????瀀椀猀琀愀琀椀挀?攀昀昀攀挀琀?漀昀?爀攀最甀氀愀琀漀爀猀?琀漀?琀栀攀?愀搀愀瀀琀椀瘀攀?最爀漀眀琀栀?漀昀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀??匀挀椀攀渀琀椀昀椀挀?刀攀瀀漀爀琀猀??? ? ??? ?????????戀爀?嬀??崀?圀攀愀琀栀攀爀猀瀀漀漀渀??爀椀昀昀椀渀?一??娀栀愀漀?????漀渀最?圀???漀渀最?夀???漀爀椀最攀渀???渀搀爀攀眀猀?倀漀氀礀洀攀渀椀猀?????挀?氀攀氀氀愀渀搀????匀栀椀?夀堀??吀栀攀??瀀砀刀??瀀砀??琀眀漀?挀漀洀瀀漀渀攀渀琀?猀礀猀琀攀洀?甀瀀?爀攀最甀氀愀琀攀猀?琀眀漀?琀愀琀?搀攀瀀攀渀搀攀渀琀?瀀攀瀀琀椀搀漀最氀礀挀愀渀?愀洀椀搀愀猀攀猀?琀漀?挀漀渀昀攀爀?戀愀挀琀攀爀椀愀氀?爀攀猀椀猀琀愀渀挀攀?琀漀?愀渀琀椀洀椀挀爀漀戀椀愀氀?瀀攀瀀琀椀搀攀嬀?崀???漀甀爀渀愀氀?漀昀??椀漀氀漀最椀挀愀氀??栀攀洀椀猀琀爀礀??? ?????????????????????戀爀?嬀??崀??甀愀渀最????匀甀渀?夀圀??夀甀愀渀????倀愀渀?夀匀???愀漀?夀????愀??????甀??娀??刀攀最甀氀愀琀椀漀渀?漀昀?琀栀攀?琀眀漀?挀漀洀瀀漀渀攀渀琀?爀攀最甀氀愀琀漀爀??瀀砀刀?漀渀?愀洀椀渀漀最氀礀挀漀猀椀搀攀猀?愀渀搀???氀愀挀琀愀洀猀?爀攀猀椀猀琀愀渀挀攀?椀渀?匀愀氀洀漀渀攀氀氀愀?攀渀琀攀爀椀挀愀?猀攀爀漀瘀愀爀?琀礀瀀栀椀洀甀爀椀甀洀嬀?崀???爀漀渀琀椀攀爀猀?椀渀??椀挀爀漀戀椀漀氀漀最礀??? ??????? ??戀爀?嬀??崀??甀渀最?????刀愀椀瘀椀漀?吀????漀渀攀猀?????匀椀氀栀愀瘀礀?吀????甀氀琀最爀攀渀?匀????瀀砀?猀椀最渀愀氀椀渀最?瀀愀琀栀眀愀礀?洀漀渀椀琀漀爀猀?戀椀漀最攀渀攀猀椀猀?愀渀搀?愀昀昀攀挀琀猀?愀猀猀攀洀戀氀礀?愀渀搀?攀砀瀀爀攀猀猀椀漀渀?漀昀?倀?瀀椀氀椀嬀?崀??吀栀攀????伀??漀甀爀渀愀氀???  ???? ?????? ???????戀爀?嬀??崀??甀攀猀琀?刀????漀甀爀琀?????圀愀氀搀漀渀?????匀挀栀漀挀欀?????刀愀椀瘀椀漀?吀????洀瀀愀椀爀攀搀?攀昀昀氀甀砀?漀昀?琀栀攀?猀椀搀攀爀漀瀀栀漀爀攀?攀渀琀攀爀漀戀愀挀琀椀渀?椀渀搀甀挀攀猀?攀渀瘀攀氀漀瀀攀?猀琀爀攀猀猀?椀渀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀嬀?崀???爀漀渀琀椀攀爀猀?椀渀??椀挀爀漀戀椀漀氀漀最礀??? ????? ??????戀爀?嬀??崀??愀爀氀猀猀漀渀??????椀甀??????搀焀瘀椀猀琀?倀????爀愀渀挀椀猀??匀???渀昀氀甀攀渀挀攀?漀昀?琀栀攀?挀瀀砀?攀砀琀爀愀挀礀琀漀瀀氀愀猀洀椀挀?猀琀爀攀猀猀?爀攀猀瀀漀渀猀椀瘀攀?瀀愀琀栀眀愀礀?漀渀?夀攀爀猀椀渀椀愀?猀瀀??攀甀欀愀爀礀漀琀椀挀?挀攀氀氀?挀漀渀琀愀挀琀嬀?崀???渀昀攀挀琀椀漀渀?愀渀搀??洀洀甀渀椀琀礀???  ???????????????????戀爀?嬀? 崀?娀栀愀渀最?匀????愀渀最?堀???吀愀渀最?儀???攀????圀愀渀最?夀???娀栀愀渀最?堀???瀀砀刀?渀攀最愀琀椀瘀攀氀礀?爀攀最甀氀愀琀攀猀?琀栀攀?瀀爀漀搀甀挀琀椀漀渀?漀昀?砀攀渀漀挀漀甀洀愀挀椀渀????愀?搀椀栀礀搀爀漀椀猀漀挀漀甀洀愀爀椀渀?搀攀爀椀瘀愀琀椀瘀攀?瀀爀漀搀甀挀攀搀?戀礀?堀攀渀漀爀栀愀戀搀甀猀?渀攀洀愀琀漀瀀栀椀氀愀嬀?崀???椀挀爀漀戀椀漀氀漀最礀伀瀀攀渀??? ?????????攀  ????戀爀?嬀??崀?匀瀀椀渀漀氀愀?匀????漀爀琀渀攀礀??刀???愀欀攀爀?????愀渀漀眀椀挀稀?????娀眀椀挀欀氀?????愀琀稀??倀???氀椀挀欀?刀????甀渀猀漀渀?刀匀???挀琀椀瘀愀琀椀漀渀?漀昀?琀栀攀??瀀砀刀??猀礀猀琀攀洀?戀礀?搀攀氀攀琀椀漀渀?漀昀?挀瀀砀??椀洀瀀愀椀爀猀?琀栀攀?愀戀椀氀椀琀礀?漀昀??愀攀洀漀瀀栀椀氀甀猀?搀甀挀爀攀礀椀?琀漀?椀渀昀攀挀琀?栀甀洀愀渀猀嬀?崀???渀昀攀挀琀椀漀渀?愀渀搀??洀洀甀渀椀琀礀??? ? ??????????????? ??戀爀?嬀??崀?娀栀漀甀?堀????攀氀氀攀爀?刀??嘀漀氀欀洀攀爀?刀???爀愀甀猀猀?一??匀挀栀攀攀爀攀爀?倀???甀渀欀攀?匀??匀琀爀甀挀琀甀爀愀氀?戀愀猀椀猀?昀漀爀?琀眀漀?挀漀洀瀀漀渀攀渀琀?猀礀猀琀攀洀?椀渀栀椀戀椀琀椀漀渀?愀渀搀?瀀椀氀甀猀?猀攀渀猀椀渀最?戀礀?琀栀攀?愀甀砀椀氀椀愀爀礀??瀀砀倀?瀀爀漀琀攀椀渀嬀?崀???漀甀爀渀愀氀?漀昀??椀漀氀漀最椀挀愀氀??栀攀洀椀猀琀爀礀??? ?????????????? ??????l HisKA-family histidine kinases[J]. Nature Communications, 2017, 8(1):2104
    [65] Banda MM, Zavala-Alvarado C, Pérez-Morales D, Bustamante VH. SlyA and HilD counteract H-NS-mediated repression on the ssrAB virulence opero
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Guotao, XUE Hailing, YAO Yuan. Research progress of Cpx two-component system in bacteria[J]. Microbiology China, 2021, 48(8): 2881-2894

Copy
Share
Article Metrics
  • Abstract:535
  • PDF: 1437
  • HTML: 1852
  • Cited by: 0
History
  • Received:April 27,2020
  • Adopted:March 22,2021
  • Online: July 30,2021
Article QR Code