Effects of antagonistic bacteria on tobacco wild fire and responses of phyllosphere microbiota
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Tobacco wild fire is one of the main diseases on tobacco. It is a promising method to control tobacco wild fire with antagonistic bacteria. [Objective] To analyze the composition and diversity of microbial community in tobacco leaf, and explain the control effect of antagonistic bacteria on tobacco wild fire. [Methods] Three antagonistic groups were applied to tobacco, and the effects of antagonistic groups on the structure and diversity of tobacco leaf microbial community were analyzed by 16S rRNA gene high-throughput sequencing and bioinformatics.[Results] The control effect of antagonistic bacteria on tobacco wild fire reached 50.44%−68.58%. The community structure and composition of antagonistic groups had significant changes, was significantly higher community diversity, compared with the control group. After treatment with antagonistic flora, the proportion of tobacco leaf microflora, such as Pantoea, Stenotrophomonas and Pseudomonas, changed significantly, Bacillus and Stenotrophomonas increased by 3.9 and 7.02 times, respectively, compared with the control. The abundance was negatively correlated with disease index. [Conclusion] The antagonistic bacteria had a good control effect on tobacco wild fire. The composition and diversity of the microbial community in the tobacco leaves were significantly affected by the application of antagonistic bacteria. The dominant bacteria such as Pseudomonas and Stenotrophomonas could colonize in the tobacco leaves and play a role in controlling tobacco wild fire.

    Reference
    [1] Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana[J]. International Journal of Molecular Sciences, 2013, 14(5):9497-9513
    [2] Wang ZG, Ding W. Research progress in tobacco wild fire disease's occurrence and control[J]. Acta Tabacaria Sinica, 2012, 18(2):101-106(in Chinese)王振国, 丁伟. 烟草野火病发生与防治的研究进展[J]. 中国烟草学报, 2012, 18(2):101-106
    [3] Tang M, Xie B, Cheng ZM, Xiang JY, Rao ZS, Cai Y, Huang S, Yang P, Yang YD, Yang Y, et al. Pathogenicity differentiation and biological characteristics of Pseudomonas syringae pv. tabaci and effective bactericide screening in Yibin tobacco planting areas[J]. Tobacco Science & Technology, 2016, 49(10):9-14(in Chinese)唐明, 谢冰, 程智敏, 向金友, 饶在生, 蔡毅, 黄胜, 杨苹, 杨懿德, 杨洋, 等. 宜宾烟区烤烟野火病的致病力分化、生物学特性及抑菌药剂筛选[J]. 烟草科技, 2016, 49(10):9-14
    [4] Stumbriene K, Gudiukaite R, Semaskiene R, Svegzda P, Jonaviciene A, Suproniene S. Screening of new bacterial isolates with antifungal activity and application of selected Bacillus sp. cultures for biocontrol of Fusarium graminearum under field conditions[J]. Crop Protection, 2018, 113:22-28
    [5] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(36):E5013-E5020
    [6] Sun HW, Yuan Y, Yang XM, Sun JP. Screening, identification and application of antagonistic bacteria against tobacco wild fire disease[J]. Tobacco Science & Technology, 2012, 45(8):84-88(in Chinese)孙宏伟, 元野, 杨晓敏, 孙剑萍. 烟草野火病拮抗生防菌的筛选、鉴定与应用[J]. 烟草科技, 2012, 45(8):84-88
    [7] Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7:10541
    [8] Liu TB, Xiao YH, Yin J, Yi TY, Zhou ZC, Hsiang T, Tang QJ, Chen W. Effects of cultured root and soil microbial communities on the disease of Nicotiana tabacum caused by Phytophthora nicotianae[J]. Frontiers in Microbiology, 2020, 11:929
    [9] Qin C, Tao JM, Liu TB, Liu YJ, Xiao NW, Li TM, Gu YB, Yin HQ, Meng DL. Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents[J]. AMB Express, 2019, 9(1):1-13
    [10] Vorholt JA. Microbial life in the phyllosphere[J]. Nature Reviews Microbiology, 2012, 10(12):828-840
    [11] Gu LK, Bai ZH, Jin B, Hu Q, Wang HL, Zhuang GQ, Zhang HX. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere[J]. Journal of Environmental Sciences, 2010, 22(1):134-141
    [12] Xiao YH, Liu XD, Meng DL, Tao JM, Gu YB, Yin HQ, Li J. The role of soil bacterial community during winter fallow period in the incidence of tobacco bacterial wilt disease[J]. Applied Microbiology and Biotechnology, 2018, 102(5):2399-2412
    [13] Gregory Caporaso J, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012, 6(8):1621-1624
    [14] Yang HW. Relationship between three tobacco diseases and the microbial communities in soil under different farming system and phyllosphere[D]. Changsha:Doctoral Dissertation of Hunan Agricultural University, 2018(in Chinese)杨红武. 不同耕作制土壤和叶面微生物群落与三种烟草病害的关系[D]. 长沙:湖南农业大学博士学位论文, 2018
    [15] Langille MGI, Zaneveld J, Gregory Caporaso J, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9):814-821
    [16] Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16):2194-2200
    [17] Edgar RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19):2460-2461
    [18] Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16):5261-5267
    [19] Tao JM, Meng DL, Qin C, Liu XD, Liang YL, Xiao YH, Liu ZH, Gu YB, Li J, Yin HQ. Integrated network analysis reveals the importance of microbial interactions for maize growth[J]. Applied Microbiology and Biotechnology, 2018, 102(8):3805-3818
    [20] Dixon P. VEGAN, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6):927-930
    [21] Wang NN. Screening, identification and evaluation of resistance to tobacco wild fire in resources of antagonistic strains[D]. Chongqing:Master's Thesis of Southwest University, 2012(in Chinese)王娜娜. 烟草野火病菌拮抗菌的筛选、鉴定及控病研究[D]. 重庆:西南大学硕士学位论文, 2012
    [22] Han XY, Chen ZH, Luo DQ, Lin Y, Zhang CS. Study on antimicrobial activity and stability of bioactive metabolite produced by Tpb55 strain fermentation[J]. Chinese Agricultural Science Bulletin, 2012, 28(27):260-264(in Chinese)韩欣宇, 陈志厚, 罗定棋, 林勇, 张成省. Tpb55菌株发酵液中活性代谢产物的抑菌作用及稳定性测定[J]. 中国农学通报, 2012, 28(27):260-264
    [23] Wang R, Zhang HC, Sun LG, Qi GF, Chen S, Zhao XY. Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak[J]. Scientific Reports, 2017, 7:343
    [24] Yang HW, Li J, Xiao YH, Gu YB, Liu HW, Liang YL, Liu XD, Hu J, Meng DL, Yin HQ. An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease[J]. Frontiers in Microbiology, 2017, 8:2179
    [25] Podolich O, Ardanov P, Zaets I, Pirttilä AM, Kozyrovska N. Reviving of the endophytic bacterial community as a putative mechanism of plant resistance[J]. Plant and Soil, 2015, 388(1/2):367-377
    [26] Wan XQ, Guo ZK, Qiao C, Li LJ, Ren WH, Yang L, Mou WF. Inhibition and field control effects of Pseudomonas fluorescens PF7-5 against Pseudomonas syringae pv. tabaci[J]. Tobacco Science & Technology, 2009, 42(10):58-60(in Chinese)万秀清, 郭兆奎, 乔婵, 李丽杰, 任文宏, 杨林, 牟伟峰. PF7-5对烟草野火病的抑制及田间防治效果[J]. 烟草科技, 2009, 42(10):58-60
    [27] Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system[J]. Applied and Environmental Microbiology, 2011, 77(10):3202-3210
    [28] Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JHJ. Leaf microbiota in an agroecosystem:spatiotemporal variation in bacterial community composition on field-grown lettuce[J]. The ISME Journal, 2012, 6(10):1812-1822
    [29] Mazzola M, Freilich S. Prospects for biological soilborne disease control:application of indigenous versus synthetic microbiomes[J]. Phytopathology®, 2017, 107(3):256-263
    [30] Gregory Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336
    [31] You C, Zhang LM, Ji SG, Gao JM, Zhang CS, Kong FY. Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizospheric soil[J]. Chinese Journal of Applied Ecology, 2014, 25(11):3323-3330(in Chinese)游偲, 张立猛, 计思贵, 高加明, 张成省, 孔凡玉. 枯草芽孢杆菌菌剂对烟草根际土壤细菌群落的影响[J]. 应用生态学报, 2014, 25(11):3323-3330
    [32] Huang K, Jiang QP, Yao XY, Wang Y, Jiang LQ, Ding W, Zhang YQ. Effects of microbial agents on tobacco root-knot nematode and diversity of rhizosphere microbial communities[J]. Chinese Tobacco Science, 2019, 40(5):36-43(in Chinese)黄阔, 江其鹏, 姚晓远, 王勇, 江连强, 丁伟, 张永强. 微生物菌剂对烟草根结线虫及根际微生物群落多样性的影响[J]. 中国烟草科学, 2019, 40(5):36-43
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Tianbo, TENG Kai, ZHOU Xiangping, CAI Hailin, XIAO Zhipeng, XIAO Yansong, YANG Hongwu, YIN Huaqun, ZHOU Zhicheng, YI Tuyong. Effects of antagonistic bacteria on tobacco wild fire and responses of phyllosphere microbiota[J]. Microbiology China, 2021, 48(8): 2643-2652

Copy
Share
Article Metrics
  • Abstract:520
  • PDF: 1243
  • HTML: 1358
  • Cited by: 0
History
  • Received:August 19,2020
  • Adopted:December 13,2020
  • Online: July 30,2021
Article QR Code