Bioinformatics-directed discovery of dehydrated linear trimer and dimer of 2,3-dihydroxybenzoyl-L-serine from Streptomyces albofaciens JCM 4342
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] As an essential element for bacterial growth, iron in its ferric form is almost insoluble in aqueous environments. Bacteria have evolved to produce various siderophores to facilitate iron uptake. For Streptomyces, the characteristic siderophores are desferrioxamines, while they can also produce other structurally different siderophores, such as ceolichelin, albomycin, enterobactin, and griseobactin. [Objective] We aimed to reveal the distribution and characteristic of siderophore biosynthetic gene clusters (BGCs), and to explore their product structures in streptomycetes. [Methods] We systematically investigated the distribution and conservation of siderophore BGCs in 308 annotated Streptomyces genomes using bioinformatics tools. Chromatographic and spectroscopic methods were utilized to isolate and characterize the enterobactin-related natural products. [Results] This enabled us to identify an orphan enterobactin BGC, which lacked genes encoding enzymes for the biosynthesis of 2,3-dihydroxybenzoic acid (2,3-DHB), together with a griseobactin BGC in Streptomyces albofaciens JCM 4342 and other strains. Four enterobactin-derived natural products, including linear trimer and dimer of 2,3-dihydroxybenzoyl-L-serine (2,3-DHBS), and their dehydrated products, were identified from S. albofaciens JCM 4342. [Conclusion] These results suggested an interesting synergistic biosynthetic mechanism executed by the two BGCs. The orphan enterobactin BGC encoding enzymes hijacked the 2,3-DHB, which was biosynthesized by the griseobactin BGC, to complete biosynthesis of the four aforementioned enterobactin-related natural products.

    Reference
    [1] Raines DJ, Sanderson TJ, Wilde EJ, Duhme-Klair AK. Siderophores in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering[M]. Netherlands:Elsevier, 2015:1-32
    [2] Hider RC, Kong XL. Chemistry and biology of siderophores[J]. Natural Product Reports, 2010, 27(5):637-657
    [3] Garénaux A, Caza M, Dozois CM. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli[J]. Veterinary Microbiology, 2011, 153(1/2):89-98
    [4] Krewulak KD,Vogel HJ. Structural biology of bacterial iron uptake[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(9):1781-1804
    [5] Mies KA, Wirgau JI, Crumbliss AL. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore[J]. Biometals, 2006, 19(2):115-126
    [6] Köster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12[J]. Research in Microbiology, 2001, 152(3):291-301
    [7] Schneider K, Rose I, Vikineswary S, Jones AL, Goodfellow M, Nicholson G, Beil W, Süssmuth RD, Fiedler HP. Nocardichelins A and B, siderophores from Nocardia strain acta 3026[J]. Journal of Natural Products, 2007, 70(6):932-935
    [8] Sheth S. Iron chelation:an update[J]. Current Opinion in Hematology, 2014, 21(3):179-185
    [9] Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes[J]. Drug Design, Development and Therapy, 2016, 10:465-481
    [10] Brittenham GM, Griffith PM, Nienhuis AW, McLaren CE, Young NS, Tucker EE, Allen CJ, Farrell DE, Harris JW. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major[J]. The New England Journal of Medicine, 1994, 331(9):567-573
    [11] Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation[J]. Biochemical Pharmacology, 2019, 168:71-81
    [12] Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E. Sideromycins:tools and antibiotics[J]. BioMetals, 2009, 22(1):3-13
    [13] Wang WF, Qiu ZQ, Tan HM, Cao LX. Siderophore production by actinobacteria[J]. Biometals, 2014, 27(4):623-631
    [14] Sheng MM, Jia HK, Zhang GY, Zeng LN, Zhang TT, Long YH, Lan J, Hu ZQ, Zeng Z, Wang B, et al. Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans[J]. Journal of Microbiology and Biotechnology, 2020, 30(5):689-699
    [15] Schumann G, Möllmann U. Screening system for xenosiderophores as potential drug delivery agents in mycobacteria[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(5):1317-1322
    [16] Kong HM, Cheng WY, Wei H, Yuan YL, Yang ZH, Zhang XJ. An overview of recent progress in siderophore-antibiotic conjugates[J]. European Journal of Medicinal Chemistry, 2019, 182:111615
    [17] Crosa JH, Walsh CT. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria[J]. Microbiology and Molecular Biology Reviews, 2002, 66(2):223-249
    [18] Huang TT, Lin SJ, Deng ZX. Recent advances in mechanism of siderophore biosynthesis in actinomycetes[J]. Microbiology China, 2011, 38(5):765-773(in Chinese)黄婷婷, 林双君, 邓子新. 放线菌中铁载体生物合成机制研究进展[J]. 微生物学通报, 2011, 38(5):765-773
    [19] Challis GL. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases[J]. Chembiochem, 2005, 6(4):601-611
    [20] Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics:logic, machinery, and mechanisms[J]. Chemical Reviews, 2006, 106(8):3468-3496
    [21] Reitz ZL, Sandy M, Butler A. Biosynthetic considerations of triscatechol siderophores framed on serine and threonine macrolactone scaffolds[J]. Metallomics, 2017, 9(7):824-839
    [22] Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes[J]. Journal of the American Chemical Society, 1979, 101(20):6097-6104
    [23] Raymond KN, Dertz EA, Kim SS. Enterobactin:an archetype for microbial iron transport[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(7):3584-3588
    [24] Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis:in vitro reconstitution of polyketide and nonribosomal peptide pathways[J]. Natural Product Reports, 2008, 25(4):757-793
    [25] Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity[J]. Nucleic Acids Research, 2011, 39(suppl_2):W362-W367
    [26] Prieto C, García-Estrada C, Lorenzana D, Martín JF. NRPSsp:non-ribosomal peptide synthase substrate predictor[J]. Bioinformatics, 2012, 28(3):426-427
    [27] Agüero-Chapin G, Pérez-Machado G, Sánchez-Rodríguez A, Santos MM, Antunes A. Alignment-free methods for the detection and specificity prediction of adenylation domains[M]. Nonribosomal Peptide and Polyketide Biosynthesis, 2016, 1401:253272
    [28] Van Der Meij A, Worsley SF, Hutchings MI, Van Wezel GP. Chemical ecology of antibiotic production by actinomycetes[J]. FEMS Microbiology Reviews, 2017, 41(3):392-416
    [29] Zeng Y, Kulkarni A, Yang ZY, Patil PB, Zhou W, Chi XL, Van Lanen S, Chen S. Biosynthesis of albomycin δ2 provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates[J]. ACS Chemical Biology, 2012, 7(9):1565-1575
    [30] Lautru S, Deeth RJ, Bailey LM, Challis GL. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining[J]. Nature Chemical Biology, 2005, 1(5):265-269
    [31] Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145[J]. Journal of the American Chemical Society, 2004, 126(50):16282-16283
    [32] Challis GL, Ravel J. Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome:structure prediction from the sequence of its non-ribosomal peptide synthetase[J]. FEMS Microbiology Letters, 2000, 187(2):111-114
    [33] Patzer SI, Braun V. Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974[J]. Journal of Bacteriology, 2010, 192(2):426-435
    [34] Lee J, Postmaster A, Soon HP, Keast D, Carson KC. Siderophore production by actinomycetes isolates from two soil sites in Western Australia[J]. BioMetals, 2012, 25(2):285-296
    [35] Fiedler HP, Krastel P, Müller J, Gebhardt K, Zeeck A. Enterobactin:the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species[J]. FEMS Microbiology Letters, 2001, 196(2):147-151
    [36] Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+:architecture and applications[J]. BMC Bioinformatics, 2009, 10:421
    [37] Rice P, Longden I, Bleasby A. EMBOSS:the European molecular biology open software suite[J]. Trends in Genetics, 2000, 16(6):276-277
    [38] Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT. Assembly line enzymology by multimodular nonribosomal peptide synthetases:the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization[J]. Chemistry & Biology, 1999, 6(6):385-400
    [39] Igarashi Y, Iida T, Fukuda T, Miyanaga S, Sakurai H, Saiki I, Miyanouchi K. Catechoserine, a new catecholate-type inhibitor of tumor cell invasion from Streptomyces sp.[J]. The Journal of Antibiotics, 2012, 65(4):207-209
    [40] Lin HN, Fischbach MA, Liu DR, Walsh CT. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes[J]. Journal of the American Chemical Society, 2005, 127(31):11075-11084
    [41] O'Brien IG, Gibson F. The structure of enterochelin and related 2,3-dihydroxy-N-benzoylserine conjugates from Escherichia coli[J]. Biochimica et Biophysica Acta, 1970, 215(2):393-402
    [42] O'Brien IG, Cox GB, Gibson F. Biologically active compounds containing 2,3-dihydroxybenzoic acid and serine formed by Escherichia coli[J]. Biochimica et Biophysica Acta, 1970, 201(3):453-460
    [43] Rogers HJ. Enterochelin complexes, pharmaceutical compositions containing them and a process for preparing them:Japan, EP0005346A1[P]. 1979.04.25. https://www.surechembl.org/document/EP-0005346-B1
    [44] Tadashi Y, Yoichi O, Atsushi M, Hisafumiy S. Hepatitis C virus protease inhibitor:Japan, JP H10298151[P]. 1997.04.30. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=19981110&DB=EPODOC&locale=en_EP&CC=JP&NR=H10298151A&KC=A&ND=5
    [45] Hantke K. Dihydroxybenzoylserine:a siderophore for E. coli[J]. FEMS Microbiology Letters, 1990, 55(1/2):5-8
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Lijun, FAN Keqiang, WANG Haiyan, HU Huitao, XIANG Lijun, AI Guomin, PAN Guohui. Bioinformatics-directed discovery of dehydrated linear trimer and dimer of 2,3-dihydroxybenzoyl-L-serine from Streptomyces albofaciens JCM 4342[J]. Microbiology China, 2021, 48(7): 2307-2317

Copy
Share
Article Metrics
  • Abstract:807
  • PDF: 1584
  • HTML: 1588
  • Cited by: 0
History
  • Received:February 24,2021
  • Adopted:April 15,2021
  • Online: July 06,2021
Article QR Code