Microbial community and dynamic changes during traditional sweet paste fermentation analyzed by high-throughput sequencing
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Background] Traditional fermented sweet paste has a delicious taste and unique flavor but little is known about microbial diversity during the fermentation by using high-throughput sequencing. [Objective] To analyze the microbial community structure and dynamic succession during natural fermentation of traditional sweet paste. [Methods] High-throughput sequencing was used to study the microbial diversity during natural fermentation of traditional sweet paste. [Results] In this study, 100 genera fungi and 432 genera bacteria were identified. Aspergillus is the dominant fungal species (≥76.96%) during the first 90 days of fermentation. Zygosaccharomyces is the dominant fungal species (≥85.42%) during 120 to 180 days of fermentation. Moreover, Bacillus is the primary bacterial genus (98.07%) during the first 43 h of fermentation and thereafter. In addition, the predominant bacteria in the koji and mash included Staphylococcus, Ralstonia, Pantoea, Burkholderia, Pediococcus, Sphingomonas, Bifidobacterium, Faecalibacterium, Kocuria and Lactobacillus. [Conclusion] The dominant florae of traditional sweet paste at different stages were determined. The results provide a theoretical basis for the study of the influence of different microorganisms on the flavor formation of the sweet paste.

    Reference
    Related
    Cited by
Get Citation

YU Dan, MAO Ping, SONG Qi, SONG Hui-Lin, CHEN Jing, LIANG Yun-Xiang, HU Yong-Mei. Microbial community and dynamic changes during traditional sweet paste fermentation analyzed by high-throughput sequencing[J]. Microbiology China, 2018, 45(5): 1061-1072

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: May 03,2018
  • Published:
Article QR Code