Research progress on reduction of selenium by microorganism and application of bio-reducing products of selenium——the 200th anniversary of the selenium discovery
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Selenium is an essential trace element for life, incorporates into selenoproteins (seleno-enzymes) in the form of selenocysteine (Sec, also referred to as the 21st protein amino acid) and selenomethionine (Se-Met). Either selenium over-intake or deficiency will lead to the occurrence of many diseases. Microorganisms are involved in the transformation of different selenium speciation including Se(?II), Se(0), Se(IV) and Se(VI). Here we mainly reviewed the reduction of selenium in microorganisms. The reduction of selenium by microbes include assimilation reduction and dissimilation reduction. Selenoproteins could be produced via the pathway of the selenium assimilation reduction, which is benefit for the selenium enrichment through food chain. Higher concentration of selenate and selenite would promote the process of selenium dissimilation reduction and the formation of selenium nanoparticles in some microbes. Both selenium methylation and the formation of selenium nanoparticles were mechanisms of detoxification, and would provide an economical and “green” solution to the bioremediation of environmental selenium contamination. Finally, the potential applications of biogenic selenium nanoparticles (bio-SeNPs) in medicine, biosensor and heavy metal contamination bioremediation were discussed. The biosynthesis of CdSe quantum dots by microbes and its biological applications were also introduced.

    Reference
    Related
    Cited by
Get Citation

WANG Dan, XIA Xian, WANG Ge-Jiao, ZHENG Shi-Xue. Research progress on reduction of selenium by microorganism and application of bio-reducing products of selenium——the 200th anniversary of the selenium discovery[J]. Microbiology China, 2017, 44(7): 1728-1735

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 30,2017
  • Published:
Article QR Code