Development trends of phage synthetic biology based on patent intelligence
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [48]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] As a new interdisciplinary subject, synthetic biology has shown great application potential in many fields such as medicine, agriculture, and industry. Bacteriophages, recognized as a pivotal research focus in synthetic biology, exhibit considerable potential for diverse applications. [Objective] The study aims to reveal the global development trends and technological advancements in phage synthetic biology through patent analysis, and to clarify its potential and challenges in future applications. [Methods] The patent analysis was carried out in multiple dimensions including patent application trend, technology structure, technology source country, legal status, and comparison between China and the United States, to comprehensively evaluate the global patent distribution and development dynamics of phage synthetic biology. [Results] The study finds that relevant technological advancements are primarily concentrated in areas such as phage genome modification, phage therapy, and phage display. However, patent data reveal imbalances in the current research regarding technological distribution and application directions, with notable gaps in biosafety and ethical considerations. [Conclusion] According to the results, we put forward the following suggestions: developing a forward-looking patent layout, strengthening global layout and protection of patents in key domains, and highlighting biosafety and application ethics.

    Reference
    [1] STRATHDEE SA, HATFULL GF, MUTALIK VK, SCHOOLEY RT. Phage therapy: from biological mechanisms to future directions[J]. Cell, 2023, 186(1): 17-31.
    [2] LIU XN, CHENG J, ZHANG GH, DING WT, DUAN LJ, YANG J, KUI L, CHENG XZ, RUAN JX, FAN W, CHEN JW, LONG GQ, ZHAO Y, CAI J, WANG W, MA YH, DONG Y, YANG SC, JIANG HF. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches[J]. Nature Communications, 2018, 9(1): 448.
    [3] RAMAN V, DESHPANDE CP, KHANDUJA S, HOWELL LM, van DESSEL N, FORBES NS. Build-a-bug workshop: using microbial-host interactions and synthetic biology tools to create cancer therapies[J]. Cell Host & Microbe, 2023, 31(10): 1574-1592.
    [4] CAMPBELL A. The future of bacteriophage biology[J]. Nature Reviews Genetics, 2003, 4(6): 471-477.
    [5] SANZ-GAITERO M, SEOANE-BLANCO M, van RAAIJ MJ. Structure and function of bacteriophages[M]// Bacteriophages. Cham: Springer International Publishing, 2021: 19-91.
    [6] 袁盛建, 马迎飞. 噬菌体合成生物学研究进展和应用[J]. 合成生物学, 2020, 1(6): 635-655. YUAN SJ, MA YF. Advances and applications of phage synthetic biology[J]. Synthetic Biology Journal, 2020, 1(6): 635-655 (in Chinese).
    [7] 陈青黎, 童贻刚. 工程噬菌体的合成生物学“智造”[J]. 合成生物学, 2023(2): 283-300. CHEN QL, TONG YG. Merging the frontiers: synthetic biology for advanced bacteriophage design[J]. Synthetic Biology Journal, 2023(2): 283-300 (in Chinese).
    [8] 吕永坤, 堵国成, 陈坚, 周景文. 合成生物学技术研究进展[J]. 生物技术通报, 2015(4): 134-148. LÜ YK, DU GC, CHEN J, ZHOU JW. Advances in synthetic biology[J]. Biotechnology Bulletin, 2015(4): 134-148 (in Chinese).
    [9] 王加利, 和似琦, 康子茜, 王建勋. 噬菌体抗体展示技术及其在抗新冠病毒抗体发现中的应用[J]. 生物技术通报, 2022, 38(5): 248-256. WANG JL, HE SQ, KANG Z(Q/X), WANG JX. Antibody phage display technology and its application in the discovery of anti-SARS-CoV-2 antibodies[J]. Biotechnology Bulletin, 2022, 38(5): 248-256 (in Chinese).
    [10] 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. WANG XM, YANG XW, LI HS, HE W, XIN ZL. Development status of synthetic biology in globe and its enlightenment[J]. Biotechnology Bulletin, 2023, 39(2): 292-302 (in Chinese).
    [11] 崔金明, 王力为, 常志广, 臧中盛, 刘陈立. 合成生物学的医学应用研究进展[J]. 中国科学院院刊, 2018, 33(11): 1218-1227. CUI JM, WANG LW, CHANG ZG, ZANG ZS, LIU CL. Progress of synthetic biology research in medical applications[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(11): 1218-1227 (in Chinese).
    [12] 肖敏凤, 张炳照, 刘陈立. 合成生物学在生命起源、进化、结构和功能相互关系研究中的作用[J]. 中国科学(生命科学), 2015, 45(10): 915-927. XIAO MF, ZHANG BZ, LIU CL. Synthetic biology in studying the origin of life, evolution, and structure-function relation[J]. Scientia Sinica (Vitae), 2015, 45(10): 915-927 (in Chinese).
    [13] ROACH DR, LEUNG CY, HENRY M, MORELLO E, SINGH D, Di SANTO JP, WEITZ JS, DEBARBIEUX L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen[J]. Cell Host & Microbe, 2017, 22(1): 38-47.
    [14] ELOIS MA, Da SILVA R, von TÖNNEMANN PILATI G, RODRÍGUEZ-LÁZARO D, FONGARO G. Bacteriophages as biotechnological tools[J]. Viruses, 2023, 15(2): 349.
    [15] JIA HJ, JIA PP, YIN SP, BU LK, YANG G, PEI DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions[J]. Frontiers in Microbiology, 2023, 14: 1172635.
    [16] MONTEIRO R, PIRES DP, COSTA AR, AZEREDO J. Phage therapy: going temperate?[J]. Trends in Microbiology, 2019, 27(4): 368-378.
    [17] BEDNAREK A, GIERMASIŃSKA-BUCZEK K, ŁOBOCKA M. Efficient traceless modification of the P1 bacteriophage genome through homologous recombination with enrichment in double recombinants: a new perspective on the functional annotation of uncharacterized phage genes[J]. Frontiers in Microbiology, 2023, 14: 1135870.
    [18] COSTA AR, AZEREDO J, PIRES DP. Synthetic biology to engineer bacteriophage genomes[M]// AZEREDO J, SILLANKORVA S, eds. Methods in Molecular Biology. New York, NY: Springer US, 2023: 261-277.
    [19] TRIDGETT M, ABABI M, JARAMILLO A. Lambda red recombineering of bacteriophage in the lysogenic state[J]. Methods in Molecular Biology, 2022, 2479: 11-19.
    [20] 刘聪, 邢博, 陈婉桐, 李俊桦, 肖敏凤. 人体肠道噬菌体的研究与应用[J]. 微生物学通报, 2021, 48(9): 3314-3329. LIU C, XING B, CHEN WT, LI JH, XIAO MF. Research and application of human gut bacteriophage[J]. Microbiology China, 2021, 48(9): 3314-3329 (in Chinese).
    [21] JONES JD, TRIPPETT C, SULEMAN M, CLOKIE MRJ, CLARK JR. The future of clinical phage therapy in the United Kingdom[J]. Viruses, 2023, 15(3): 721.
    [22] DÜZGÜNEŞ N, SESSEVMEZ M, YILDIRIM M. Bacteriophage therapy of bacterial infections: the rediscovered frontier[J]. Pharmaceuticals, 2021, 14(1): 34.
    [23] KWIATEK M, PARASION S, NAKONIECZNA A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections-an in vivo studies overview[J]. Journal of Applied Microbiology, 2020, 128(4): 985-1002.
    [24] KORTRIGHT KE, CHAN BK, KOFF JL, TURNER PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232.
    [25] WEI JW, PENG N, LIANG YX, LI KK, LI YJ. Phage therapy: consider the past, embrace the future[J]. Applied Sciences, 2020, 10(21): 7654.
    [26] UYTTEBROEK S, CHEN BX, ONSEA J, RUYTHOOREN F, DEBAVEYE Y, DEVOLDER D, SPRIET I, DEPYPERE M, WAGEMANS J, LAVIGNE R, PIRNAY JP, MERABISHVILI M, de MUNTER P, PEETERMANS WE, DUPONT L, van GERVEN L, METSEMAKERS WJ. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review[J]. The Lancet Infectious Diseases, 2022, 22(8): e208-e220.
    [27] KUTATELADZE M, ADAMIA R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics[J]. Trends in Biotechnology, 2010, 28(12): 591-595.
    [28] MATEUS L, COSTA L, SILVA YJ, PEREIRA C, CUNHA A, ALMEIDA A. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture[J]. Aquaculture, 2014, 424: 167-173.
    [29] KISHOR C, MISHRA RR, SARAF SK, KUMAR M, SRIVASTAV AK, NATH G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model[J]. The Indian Journal of Medical Research, 2016, 143(1): 87-94.
    [30] DEDRICK RM, GUERRERO-BUSTAMANTE CA, GARLENA RA, RUSSELL DA, FORD K, HARRIS K, GILMOUR KC, SOOTHILL J, JACOBS-SERA D, SCHOOLEY RT, HATFULL GF, SPENCER H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5): 730-733.
    [31] KEBRIAEI R, LEV KL, SHAH RM, STAMPER KC, HOLGER DJ, MORRISETTE T, KUNZ COYNE AJ, LEHMAN SM, RYBAK MJ. Eradication of biofilm-mediated methicillin-resistant Staphylococcus aureus infections in vitro: bacteriophage-antibiotic combination[J]. Microbiology Spectrum, 2022, 10(2): e0041122.
    [32] GOLSHAHI L, SEED KD, DENNIS JJ, FINLAY WH. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex[J]. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21(4): 351-360.
    [33] LI Y, QU XW, CAO BR, YANG T, BAO Q, YUE H, ZHANG LW, ZHANG GW, WANG L, QIU PH, ZHOU NY, YANG MY, MAO CB. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage[J]. Advanced Materials, 2020, 32(29): e2001260.
    [34] THURSZ MR, FORREST EH, RYDER S. Prednisolone or pentoxifylline for alcoholic hepatitis reply[J]. New England Journal of Medicine, 2015, 373(3): 282-283.
    [35] DUAN Y, LLORENTE C, LANG S, BRANDL K, CHU HK, JIANG L, WHITE RC, CLARKE TH, NGUYEN K, TORRALBA M, SHAO Y, LIU JY, HERNANDEZ- MORALES A, LESSOR L, RAHMAN IR, MIYAMOTO Y, LY M, GAO B, SUN WZ, KIESEL R, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease[J]. Nature, 2019, 575(7783): 505-511.
    [36] 刘自强, 潘勇军, 谭新, 杨永清, 熊敏, 周宁, 侯洁薇, 丁训梅, 马迎飞, 余加林. 一株耐碳青霉烯类鲍曼不动杆菌噬菌体的分离鉴定和临床应用[J]. 微生物学通报, 2023, 50(7): 3035-3048. LIU ZQ, PAN YJ, TAN X, YANG YQ, XIONG M, ZHOU N, HOU JW, DING XM, MA YF, YU JL. Isolation, identification, and clinical application of a novel phage targeting carbapenem-resistant Acinetobacter baumannii[J]. Microbiology China, 2023, 50(7): 3035-3048 (in Chinese).
    [37] 孙一享, 常洪军, 杨行鑫, 吴明伟, 黎洁. 水产动物副溶血弧菌病及其噬菌体防治研究进展[J]. 微生物学通报, 2023, 50(8): 3620-3634. SUN YX, CHANG HJ, YANG XX, WU MW, LI J. Vibriosis caused by Vibrio parahaemolyticus in aquatic animals and bacteriophage therapy: a review[J]. Microbiology China, 2023, 50(8): 3620-3634 (in Chinese).
    [38] SMITH GP, PETRENKO VA. Phage display[J]. Chemical Reviews, 1997, 97(2): 391-410.
    [39] SALMOND GPC, FINERAN PC. A century of the phage: past, present and future[J]. Nature Reviews Microbiology, 2015, 13(12): 777-786.
    [40] JAROSZEWICZ W, MORCINEK-ORŁOWSKA J, PIERZYNOWSKA K, GAFFKE L, WĘGRZYN G. Phage display and other peptide display technologies[J]. FEMS Microbiology Reviews, 2022, 46(2): fuab052.
    [41] LEDSGAARD L, LJUNGARS A, RIMBAULT C, SØRENSEN CV, TULIKA T, WADE J, WOUTERS Y, McCAFFERTY J, LAUSTSEN AH. Advances in antibody phage display technology[J]. Drug Discovery Today, 2022, 27(8): 2151-2169.
    [42] CHOCKALINGAM K, PENG ZY, VUONG CN, BERGHMAN LR, CHEN ZL. Golden Gate assembly with a bi-directional promoter (GBid): a simple, scalable method for phage display Fab library creation[J]. Scientific Reports, 2020, 10(1): 2888.
    [43] 高雅, 王兆飞, 严亚贤. 噬菌体治疗肺炎克雷伯菌感染的研究进展[J]. 微生物学通报, 2021, 48(9): 3271-3280. GAO Y, WANG ZF, YAN YX. Advances in the treatment of Klebsiella pneumoniae infection with bacteriophage therapy[J]. Microbiology China, 2021, 48(9): 3271-3280 (in Chinese).
    [44] 曾祥伟, 邹瑶, 周玉萍, 田长恩. 丝状真菌表面展示技术研究进展[J]. 微生物学通报, 2023, 50(12): 5574-5587. ZENG XW, ZOU Y, ZHOU YP, TIAN CE. Research progress on surface display technology of filamentous fungi[J]. Microbiology China, 2023, 50(12): 5574-5587 (in Chinese).
    [45] ALFALEH MA, ALSAAB HO, MAHMOUD AB, ALKAYYAL AA, JONES ML, MAHLER SM, HASHEM AM. Phage display derived monoclonal antibodies: from bench to bedside[J]. Frontiers in Immunology, 2020, 11: 1986.
    [46] CURRY B, GEORGE KD. Industrial concentration: a survey[J]. The Journal of Industrial Economics, 1983, 31(3): 203.
    [47] ZHAO NL, SONG YJ, XIE XQ, ZHU ZQ, DUAN CX, NONG C, WANG H, BAO R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 112.
    [48] PACZESNY J, BIELEC K. Application of bacteriophages in nanotechnology[J]. Nanomaterials, 2020, 10(10): 1944.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIANG Qiangyu, MA Lili, GAO Wanying, WU Zongzhen, ZUO Kunlan, LI Jun, CHEN Zexin, LIU Huan. Development trends of phage synthetic biology based on patent intelligence[J]. Microbiology China, 2025, 52(4): 1840-1860

Copy
Share
Article Metrics
  • Abstract:22
  • PDF: 32
  • HTML: 52
  • Cited by: 0
History
  • Received:June 30,2024
  • Adopted:August 08,2024
  • Online: April 21,2025
  • Published: April 20,2025
Article QR Code