Isolation, identification, and whole genome sequencing of Enterococcus casseliflavus from forest musk deer
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • | | | |
  • Comments
    Abstract:

    [Background] Enterococcus casseliflavus is an opportunistic pathogenic bacterium with wide distribution in the nature, while there are few studies about this bacterium in forest musk deer. [Objective] We isolated, identified, and sequenced a strain of E.casseliflavus from the liver of a death forest musk deer, aiming to lay a foundation for the prevention and treatment of related diseases in forest musk deer. [Methods] Biochemical tests, drug susceptibility tests, 16S rRNA gene analysis, and bacterial load tests were conducted for the isolate. The results of whole genome sequencing were used to annotate gene functions and analyze genetic evolution. [Results] The isolated strain was identified based on 16S rRNA gene analysis and average nucleotide identity as E.casseliflavus, which was consistent with the results of biochemical tests. The strain was named Dec0527. The strain was resistant to cephalexin, aztreonam, amikacin, and tobramycin, and it was sensitive to doxycycline, tetracycline, chloramphenicol, sulfamethoxazole trimethoprim, some β-lactams, aminoglycosides, and quinolones. The bacterial load test results showed that the invasiveness of strain Dec0527 to the liver was significantly higher than that to the heart, lung, spleen, and kidney. The genome length of this strain was 3 345 060 bp, with the G+C content of 42.55%. Strain Dec0527 carried a variety of virulence genes such as ebpC, tufA, groEL, cpsA, cap8E, and psaA, as well as the genes for resistance to vancomycin and ciprofloxacin. The resistance genes of strain Dec0527 against aminoglycosides, macrolides, and β-lactams were not completely consistent with the drug resistance. In addition, the genome of the strain Dec0527 had 2 circular plasmids and a relatively complete phage region. [Conclusion] We isolated a strain of E. casseliflavus from the liver of a dead forest musk deer and sequenced and analyzed the whole genome of this strain, providing a reference for the prevention and control of diseases in forest musk deer.

    Reference
    [1] YOSHINO Y. Enterococcus casseliflavus infection: a review of clinical features and treatment[J]. Infection and Drug Resistance, 2023, 16: 363-368.
    [2] DAVE VP, PATHENGAY A, BRAIMAH IZ, PANCHAL B, SHARMA S, PAPPURU RR, MATHAI A, TYAGI M, NARAYANAN R, JALALI S, DAS T. Enterococcus endophthalmitis: clinical settings, antimicrobial susceptibility, and management outcomes[J]. Retina, 2020, 40(5): 898-902.
    [3] NZANA VB, ROHIT A, GEORGE D, VIJAYAN M, MATHEW M, SANKARAN S, NAGARAJAN P, ABRAHAM G. Twenty-one episodes of peritonitis in a continuous ambulatory peritoneal dialysis patient: what is the root cause?[J]. Indian Journal of Medical Microbiology, 2018, 36(2): 282-284.
    [4] ABAMECHA A, WONDAFRASH B, ABDISSA A. Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia[J]. BMC Research Notes, 2015, 8: 213.
    [5] MONTICELLI J, KNEZEVICH A, LUZZATI R, Di BELLA S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens[J]. Journal of Infection and Chemotherapy, 2018, 24(4): 237-246.
    [6] 刘晨苗, 洪婷婷, 王淑辉, 董响贵, 任战军. 林麝泌香的分子机制研究进展[J]. 动物学杂志, 2022, 57(1): 152-158. LIU CM, HONG TT, WANG SH, DONG XG, REN ZJ. Research progress on molecular mechanism of musk secretion in forest musk deer[J]. Chinese Journal of Zoology, 2022, 57(1): 152-158(in Chinese).
    [7] 孟根达来, Myagmarsuren, Batkhuu, Chimedragchaa, 哈斯苏荣. 麝属动物的分类学研究历史沿革[J]. 野生动物学报, 2018, 39(4): 966-971. MENG G, MYAGMARSUREN, BATKHUU, CHIMEDRAGCHAA, HA S. Historical evolution of taxonomy research on musk deer species[J]. Chinese Journal of Wildlife, 2018, 39(4): 966-971(in Chinese).
    [8] 罗燕, 王朋, 赵洪明, 冯亚文, 武革利, 程建国, 邹立扣, 康纪平, 马炳存, 李蓓. 林麝肺源致病性大肠杆菌分离鉴定及毒力基因PCR检测[J]. 中国预防兽医学报, 2012, 34(8): 615-618. LUO Y, WANG P, ZHAO HM, FENG YW, WU GL, CHENG JG, ZOU LK, KANG JP, MA BC, LI B. Isolation and identification of lung pathogenic Escherichia coli from musk deer and PCR detection of the virulence genes[J]. Chinese Journal of Preventive Veterinary Medicine, 2012, 34(8): 615-618(in Chinese).
    [9] 黄静. 国家重点保护野生动物名录(陆生部分)[J]. 森林与人类, 2021(12): 111-117. HUANG J. List of Wild Animals under National Key Protection (Terrestrial Part)[J]. Forests and People, 2021(12): 111-117(in Chinese).
    [10] 罗燕, 程建国, 王建明, 康纪平, 蔡永华, 李秋波, 贾炼. 林麝肺炎及化脓性疾病的病理组织学观察[J]. 动物医学进展, 2009, 30(11): 122-123. LUO Y, CHENG JG, WANG JM, KANG JP, CAI YH, LI QB, JIA L. Histopathological observations of forest musk deer died in pneumonia and suppurative diseases[J]. Progress in Veterinary Medicine, 2009, 30(11): 122-123(in Chinese).
    [11] GUPTA V, YU K, POGUE JM, WEEKS J, CLANCY CJ. 642. facility reported vs. CLSI MIC breakpoint comparison of carbapenem non-susceptible (carb-NS) Enterobacteriaceae (ENT) from 2016–2019: a multicenter evaluation[J]. Open Forum Infectious Diseases, 2021, 8(Supplement_1): S423.
    [12] 吴悦妮, 冯凯, 厉舒祯, 王朱珺, 张照婧, 邓晔. 16S/18S/ITS扩增子高通量测序引物的生物信息学评估和改进[J]. 微生物学通报, 2020, 47(9): 2897-2912. WU YN, FENG K, LI SZ, WANG ZJ, ZHANG ZJ, DENG Y. In-silico evaluation and improvement on 16S/18S/ITS primers for amplicon high-throughput sequencing[J]. Microbiology China, 2020, 47(9): 2897-2912(in Chinese).
    [13] 国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准食品微生物学检验菌落总数测定: GB 4789.2—2022[S]. 北京: 中国标准出版社, 2022. National Health Commission, State Administration for Market Regulation. National food safety standard- Microbiological examination of food: Aerobic plate count: GB 4789.2—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
    [14] 董妮华, 陈小珺, 李昱昊, 孙卿, 陈梦莉, 周黎笋, 付宁宁, 邵东华, 刘珂, 李宗杰, 邱亚峰, 李蓓蓓, 魏建超, 马志永. 猪链球菌2型在感染兔体内的分布及其致病性研究[J]. 中国动物传染病学报, 2024, 32(5): 33-38. DONG NH, CHEN XJ, LI YH, SUN Q, CHEN ML, ZHOU LS, FU NN, SHAO DH, LIU K, LI ZJ, QIU YF, LI BB, WEI JC, MA ZY. Distribution and pathogenicity of Streptococcus suis Type 2 in infected rabbits[J]. Chinese Journal of Animal Infections Diseases, 2024, 32(5): 33-38(in Chinese).
    [15] 娄欣宇, 倪敬轩, 林炜明. 鱼精蛋白对大肠杆菌急性感染小鼠的保护作用研究[J]. 中国预防兽医学报, 2020, 42(5): 506-511. LOU XY, NI JX, LIN WM. The protective effects of protamine protein on Escherichia coli acute infection in mice[J]. Chinese Journal of Preventive Veterinary Medicine, 2020, 42(5): 506-511(in Chinese).
    [16] LEE I, KIM YO, PARK SC, CHUN J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 1100-1103.
    [17] REID KC, COCKERILL III FR, PATEL R. Clinical and epidemiological features of Enterococcus casseliflavus/flavescens and Enterococcus gallinarum bacteremia: a report of 20 cases[J]. Clinical Infectious Diseases, 2001, 32(11): 1540-1546.
    [18] KANDARAKIS SA, SPERNOVASILIS N, GEORGALAS I, MENDRIS M, TSIOUTIS C, AGOURIDIS AP. Endophthalmitis caused by Enterococcus casseliflavus: a systematic review of literature[J]. Germs, 2023, 13(4): 343-351.
    [19] OKUMURA N, WATANABE T, TERANISHI S, SUZUKI D, HASHIMOTO T, TAKAHASHI K, HARA T. Successful treatment of aortic valve endocarditis caused by Enterococcus casseliflavus: a case report[J]. BMC Infectious Diseases, 2021, 21(1): 447.
    [20] MOTIE I, BURNS K, THOMPSON R, FRIAR E, BERMINGHAM I, RANASINGHE U, WIESE- ROMETSCH W. Acinetobacter radioresistens and Enterococcus casseliflavus co-infection with endocarditis, bacteremia, and pneumonia[J]. IDCases, 2022, 30: e01622.
    [21] JAIN C, RODRIGUEZ-R LM, PHILLIPPY AM, KONSTANTINIDIS KT, ALURU S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries[J]. Nature Communications, 2018, 9: 5114.
    [22] 陈秀, 何江波, 任禛, 曹艳茹, 曹丽琰, 魏云芳, 王纪爱, 孔璟, 柴雁菁. 昆明越冬红嘴鸥粪便潜在病原细菌及耐药基因与毒力因子组成[J]. 微生物学通报, 2024, 51(6): 1898-1916. CHEN X, HE JB, REN Z, CAO YR, CAO LY, WEI YF, WANG JA, KONG J, CHAI YJ. Potential pathogenic bacteria, antibiotic resistance genes, and virulence factors from the feces of Chroicocephalus ridibundus overwintering in Kunming[J]. Microbiology China, 2024, 51(6): 1898-1916(in Chinese).
    [23] TAN YH, ARROS P, BERRÍOS-PASTÉN C, WIJAYA I, CHU WHW, CHEN YH, CHEAM G, NAIM ANM, MARCOLETA AE, RAVIKRISHNAN A, NAGARAJAN N, LAGOS R, GAN YH. Hypervirulent Klebsiella pneumoniae employs genomic island encoded toxins against bacterial competitors in the gut[J]. The ISME Journal, 2024, 18(1): wrae054.
    [24] 杨玲双, 谢新强, 李滢, 张菊梅, 丁郁, 吴清平, 王涓. 屎肠球菌132胆盐水解酶基因的克隆表达与酶学特性[J]. 现代食品科技, 2022, 38(8): 35-43. YANG LS, XIE XQ, LI Y, ZHANG JM, DING Y, WU QP, WANG J. Cloning, heterologous expression, and enzymatic characteristics of the bile salt hydrolase gene from Enterococcus faecium 132[J]. Modern Food Science and Technology, 2022, 38(8): 35-43(in Chinese).
    [25] 曾忠花, 刘容容, 汤俐, 李卫芬. 肠道菌群与胆汁酸代谢的互相作用[J]. 中国微生态学杂志, 2021, 33(7): 849-856. ZENG ZH, LIU RR, TANG L, LI WF. Interaction between gut microbiota and bile acid metabolism[J]. Chinese Journal of Microecology, 2021, 33(7): 849-856(in Chinese).
    [26] 卢方云, 杨彪, 马晶晶, 杨静, 李鹏鹏, 徐为民, 王道营, 邹烨. 胆盐水解酶酶学性质与基因结构研究进展[J]. 食品工业科技, 2023, 44(8): 469-475. LU FY, YANG B, MA JJ, YANG J, LI PP, XU WM, WANG DY, ZOU Y. Progress on enzymatic properties and gene structure of bile salt hydrolase[J]. Science and Technology of Food Industry, 2023, 44(8): 469-475(in Chinese).
    [27] BEGLEY M, HILL C, GAHAN CGM. Bile salt hydrolase activity in probiotics[J]. Applied and Environmental Microbiology, 2006, 72(3): 1729-1738.
    [28] 李一鸣, 王少林. 肠杆菌科细菌耐药基因表达的遗传和环境调控[J]. 生物工程学报, 2021, 37(4): 1092-1106. LI YM, WANG SL. The impact of genetic and environmental regulation on the expression of antibiotic resistance genes in Enterobacteriaceae[J]. Chinese Journal of Biotechnology, 2021, 37(4): 1092-1106(in Chinese).
    [29] REYNOLDS J, CHAN L, TRUDEAU R, SEVILLE MT. Impact of positive vancomycin-resistant Enterococcus (VRE) screen result on appropriateness of definitive antibiotic therapy[J]. Infection Control & Hospital Epidemiology, 2020, 41(S1): s263.
    [30] 陈春辉, 徐晓刚. 肠球菌万古霉素耐药基因簇遗传特性[J]. 遗传, 2015, 37(5): 452-457. CHEN CH, XU XG. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.[J]. Hereditas, 2015, 37(5): 452-457(in Chinese).
    [31] AHMED MO, BAPTISTE KE. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health[J]. Microbial Drug Resistance, 2018, 24(5): 590-606.
    [32] 袁妍, 朱卫民. 耐万古霉素肠球菌耐药机制的研究进展[J]. 国外医药(抗生素分册), 2022, 43(2): 70-75. YUAN Y, ZHU WM. Advances research on vancomycin- resistant Enterococcus[J]. World Notes on Antibiotics, 2022, 43(2): 70-75(in Chinese).
    [33] HASHIMOTO Y, KITA I, SUZUKI M, HIRAKAWA H, OHTAKI H, TOMITA H. First report of the local spread of vancomycin-resistant enterococci ascribed to the interspecies transmission of a vanA gene cluster-carrying linear plasmid[J]. mSphere, 2020, 5(2): e00102-20.
    [34] RAZA T, ULLAH SR, MEHMOOD K, ANDLEEB S. Vancomycin resistant Enterococci: a brief review[J]. Journal of the Pakistan Medical Association, 2018, 68(5): 768-772.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YANG Kaiwei, DING Hui, MA Bingcun, LI Zengting, WU Xi, LIU Jie, LUO Yan. Isolation, identification, and whole genome sequencing of Enterococcus casseliflavus from forest musk deer[J]. Microbiology China, 2025, 52(3): 1265-1280

Copy
Share
Article Metrics
  • Abstract:50
  • PDF: 42
  • HTML: 126
  • Cited by: 0
History
  • Received:May 20,2024
  • Adopted:June 17,2024
  • Online: March 19,2025
Article QR Code