Exopolysaccharides secretion of Limosilactobacillus fermentum 2-1 based on AI-2 activity
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [41]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] The LuxS/autoinducer-2 (AI-2) quorum sensing system regulates bacterial adaptation to environmental changes by secreting signal molecules. Exopolysaccharides (EPS) play a crucial role in protecting cells from external environmental stress and damage. However, the relationship between the LuxS/AI-2 system and EPS production remains unclear. [Objective] To investigate the relationship between AI-2 activity and EPS production in Limosilactobacillus fermentum 2-1 cultured under different conditions. [Methods] The phenol-sulfuric acid method and Vibrio harveyi BB170 bioluminescence assay were employed to determine the EPS yield and AI-2 activity, respectively, of L.fermentum 2-1 cultured under different conditions. [Results] The cell growth of L.fermentum 2-1 was the fastest during the early stages of culture, after which the cell density gradually stabilized. The AI-2 activity peaked at the time point of 7 h and then decreased. The EPS production presented a trend of first rising and then declining, reaching the peak of (204.30±15.98) mg/L at the time point of 16 h, which was significantly higher than that at other time points. Both elevated (44 ℃) and declined (23 ℃, 30 ℃) temperatures inhibited the cell density, AI-2 activity, and EPS production. Acidic conditions favored AI-2 secretion but inhibited cell growth and EPS production. AI-2 activity and EPS production were positively correlated with inoculum size within the range of 1%−3%. Changes of the carbon source altered the cell density, AI-2 activity, and EPS production. Addition of exogenous AI-2 at a final concentration of 100 μmol/L promoted EPS production in L.fermentum 2-1 (P<0.05). [Conclusion] Under certain conditions, there is a positive correlation between AI-2 activity and EPS production in L.fermentum 2-1.

    Reference
    [1] 王怡明. 乳酸菌及其生物工程研究新进展[J]. 科技风, 2022(10): 152-154. WANG YM. Research progress of lactic acid bacteria and its bioengineering[J]. Ke Ji Feng, 2022(10): 152-154(in Chinese).
    [2] 朱萌茜. 调节糖、脂代谢乳酸菌的筛选及其功能评价[D]. 郑州: 河南工业大学硕士学位论文, 2023. ZHU MQ. Screening and functional evaluation of lactic acid bacteria regulating sugar and lipid metabolism[D]. Zhengzhou: Master’s Thesis of Henan University of Technology, 2023(in Chinese).
    [3] LIU R. A promising area of research in medicine: recent advances in properties and applications of Lactobacillus-derived exosomes[J]. Frontiers in Microbiology, 2024, 15: 1266510.
    [4] 张卓. 红树莓提取物复配益生菌对小鼠肠道菌群的影响[D]. 北京: 北京林业大学硕士学位论文, 2020. ZHANG Z. Effect of raspberry extract combined with probiotics on intestinal flora in mice[D]. Beijing: Master’s Thesis of Beijing Forestry University, 2020(in Chinese).
    [5] 张会. 降血糖功能乳酸菌的筛选\降糖机理及应用研究[D]. 镇江: 江苏大学硕士学位论文, 2023. ZHANG H. Screening of lactic acid bacteria with hypoglycemic function\study on hypoglycemic mechanism and application[D]. Zhenjiang: Master’s Thesis of Jiangsu University, 2023(in Chinese).
    [6] AHIRE JJ, KASHIKAR MS, MADEMPUDI RS. Comparative accounts of probiotic properties of spore and vegetative cells of Bacillus clausii UBBC07 and in silico analysis of probiotic function[J]. 3 Biotech, 2021, 11(3): 116.
    [7] 赵婧, 高永娇, 孙靖辰, 左锋, 潘禹溪, 邰孟蝶, 王坤. 乳酸菌胞外多糖的研究进展[J]. 黑龙江八一农垦大学学报, 2023, 35(5): 51-56, 105. ZHAO J, GAO YJ, SUN JC, ZUO F, PAN YX, TAI MD, WANG K. Research progress of exopolysaccharide from lactic acid bacteria[J]. Journal of Heilongjiang Bayi Agricultural University, 2023, 35(5): 51-56, 105(in Chinese).
    [8] ZHA JH, ZHANG JN, LU JF, ZHANG GC, HUA MZ, GUO WM, YANG J, FAN G. A review of lactate-lactylation in malignancy: its potential in immunotherapy[J]. Frontiers in Immunology, 2024, 15: 1384948.
    [9] JIANG GY, GAN LZ, LI XG, HE J, ZHANG SH, CHEN J, ZHANG RS, XU Z, TIAN YQ. Characterization of structural and physicochemical properties of an exopolysaccharide produced by Enterococcus sp. F2 from fermented Soya beans[J]. Frontiers in Microbiology, 2021, 12: 744007.
    [10] MATSUZAKI C, KAMISHIMA K, MATSUMOTO K, KOGA H, KATAYAMA T, YAMAMOTO K, HISA K. Immunomodulating activity of exopolysaccharide- producing Leuconostoc mesenteroides strain NTM048 from green peas[J]. Journal of Applied Microbiology, 2014, 116(4): 980-989.
    [11] CHEGINI P, SALIMI F, ZARE EN, FARROKH P. Biogenic synthesis of antibacterial and antioxidant silver nanoparticles using Enterococcus faecium DU.FS-derived exopolysaccharides: a sustainable approach for green nanotechnology[J]. Journal of Polymers and the Environment, 2024.
    [12] 方伟, 李佳佳, 耿伟涛, 贾龙刚, 陈铁涛, 王艳萍. 发酵乳杆菌CECT 5716产胞外多糖培养基成分优化及抗氧化活性研究[J]. 中国酿造, 2022, 41(11): 187-192. FANG W, LI JJ, GENG WT, JIA LG, CHEN TT, WANG YP. Optimization for medium components of exopolysaccharide production by Lactobacillus fermentum CECT 5716 and antioxidant activity[J]. China Brewing, 2022, 41(11): 187-192(in Chinese).
    [13] 李超, 王春凤, 杨桂连. 乳酸菌胞外多糖肠道黏附及免疫调节作用研究进展[J]. 食品科学, 2014, 35(11): 314-318. LI C, WANG CF, YANG GL. Progress in intestinal adhesion and immunoregulatory effect of extracellular polysaccharides of lactic acid bacteria[J]. Food Science, 2014, 35(11): 314-318(in Chinese).
    [14] HU SM, ZHOU JM, ZHOU QQ, LI P, XIE YY, ZHOU T, GU Q. Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk[J]. LWT, 2021, 147: 111561.
    [15] QIAN YL, LI Y, XU TT, ZHAO HJ, ZENG MY, LIU ZY. Dissecting of the AI-2/LuxS mediated growth characteristics and bacteriostatic ability of Lactiplantibacillus plantarum SS-128 by integration of transcriptomics and metabolomics[J]. Foods, 2022, 11(5): 638.
    [16] 马文敏, 陈轩岐, 马红霞, 张文慧, 孔令聪, 周昱伽, 胡元元, 贾宇. 群体感应信号分子对免疫系统的影响[J]. 生物化学与生物物理进展, 2024, 51(11): 2853-2867. MA WM, CHEN XQ, MA HX, ZHANG WH, KONG LC, ZHOU YJ, HU YY, JIA Y. Effects of quorum sensing molecules on the immune system[J]. Progress in Biochemistry and Biophysics, 2024, 51(11): 2853-2867(in Chinese).
    [17] DENG ZX, HOU KW, VALENCAK TG, LUO XM, LIU JX, WANG HF. AI-2/LuxS quorum sensing system promotes biofilm formation of Lactobacillus rhamnosus GG and enhances the resistance to enterotoxigenic Escherichia coli in germ-free zebrafish[J]. Microbiology Spectrum, 2022, 10(4): e0061022.
    [18] 张悦, 贺银凤, 顾悦, 王艳, 郑砚学. 高产生物膜乳酸菌抗逆性及其抗氧化特性[J]. 农业工程学报, 2021, 37(6): 282-288. ZHANG Y, HE YF, GU Y, WANG Y, ZHENG YX. Stress resistance and antioxidant properties of lactic acid bacteria with high biofilm production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 282-288(in Chinese).
    [19] 杨义, 赵守祺, 葛菁萍, 宋刚, 杜仁鹏. 微生物胞外多糖在环境中的应用[J]. 中国农学通报, 2024, 40(9): 66-74. YANG Y, ZHAO SQ, GE JP, SONG G, DU RP. Application of microbial exopolysaccharides in environment[J]. Chinese Agricultural Science Bulletin, 2024, 40(9): 66-74(in Chinese).
    [20] 吴梦园, 徐慧敏, 张鑫, 朱青永, 陈宇杰, 陈启和, 刘政捷. 黄绿卷毛菇胞外多糖发酵条件的优化及其生物活性研究[J]. 核农学报, 2023, 37(8): 1598-1608. WU MY, XU HM, ZHANG X, ZHU QY, CHEN YJ, CHEN QH, LIU ZJ. Optimization of fermentation conditions and biological activities of exopolysaccharides from Floccularia luteovirens[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(8): 1598-1608(in Chinese).
    [21] 唐京, 陈明, 柯文灿, 王丽娜, 张娟, 丁武蓉. 乳酸菌在疾病防治和人体保健中的应用研究进展[J]. 微生物学杂志, 2017, 37(4): 98-107. TANG J, CHEN M, KE WC, WANG LN, ZHANG J, DING WR. Advances in lacto-bacteria in disease control, prevention and health care[J]. Journal of Microbiology, 2017, 37(4): 98-107(in Chinese).
    [22] 李佳伟, 虞宁馨, 于连升, 杜仁鹏. 乳酸菌胞外多糖在食品工业中的应用研究[J]. 中国酿造, 2023, 42(6): 17-21. LI JW, YU NX, YU LS, DU RP. Application of exopolysaccharides of lactic acid bacteria in food industry[J]. China Brewing, 2023, 42(6): 17-21(in Chinese).
    [23] 王坤, 牛萌萌, 赵婧. 乳酸菌胞外多糖的免疫调节及抗肿瘤特性的研究[J]. 黑龙江八一农垦大学学报, 2019, 31(3): 51-55. WANG K, NIU MM, ZHAO J. Research on immunoregulation and anti-tumor characteristics of exopolysaccharides from lactic acid bacteria[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31(3): 51-55(in Chinese).
    [24] JIVKOVA D, SATHIYANARAYANAN G, HARIR M, HERTKORN N, SCHMITT-KOPPLIN P, SANHAJI G, FOCHESATO S, BERTHOMIEU C, HEYRAUD A, ACHOUAK W, SANTAELLA C, HEULIN T. Production and characterization of a novel exopolysaccharide from Ramlibacter tataouinensis[J]. Molecules, 2022, 27(21): 7172.
    [25] TAGA ME, XAVIER KB. Methods for analysis of bacterial autoinducer-2 production[J]. Current Protocols in Microbiology, 2011, Chapter 1: Unit1C.1.
    [26] 燕彩玲. 乳酸菌产信号分子AI-2的研究及其与生物膜形成的关系[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2016. YAN CL. Study on signal molecule AI-2 produced by lactic acid bacteria and its relationship with biofilm formation[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2016(in Chinese).
    [27] 纪亚楠. 环境胁迫对乳酸菌产生物膜、信号分子AI-2及胞外多糖的影响[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2020. JI YN. Effects of environmental stress on biofilm, signal molecule AI-2 and extracellular polysaccharide production by lactic acid bacteria[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2020(in Chinese).
    [28] 顾悦. 环境胁迫及酵母菌对乳酸菌LuxS/AI-2群体感应系统的影响[D]. 呼和浩特: 内蒙古农业大学博士学位论文, 2017. GU Y. Effects of environmental stress and yeast on quorum sensing system of lactic acid bacteria LuxS/AI-2[D]. Hohhot: Doctoral Dissertation of Inner Mongolia Agricultural University, 2017(in Chinese).
    [29] 蔡针华. 群体感应信号分子AI-2高产乳酸菌株筛选及特性研究[D]. 临汾: 山西师范大学硕士学位论文, 2018. CAI ZH. Screening and characterization of high-yield lactic acid bacteria strains with quorum sensing signal molecule AI-2[D]. Linfen: Master’s Thesis of Shanxi Normal University, 2018(in Chinese).
    [30] 司天昭, 柳陈坚, 秦晓萌, 李晓然, 罗义勇, 杨恩. 植物乳杆菌YM-2菌株胞外多糖生物合成工艺优化[J]. 食品科学, 2017, 38(10): 24-30. SI TZ, LIU CJ, QIN XM, LI XR, LUO YY, YANG E. Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum YM-2[J]. Food Science, 2017, 38(10): 24-30(in Chinese).
    [31] 刘蕾. AI-2对鸭疫里默氏杆菌生物学功能调控的研究[D]. 北京: 中国农业科学院硕士学位论文, 2013. LIU L. Study on the regulation of biological function of Riemerella anatipestifer by AI-2[D]. Beijing: Master’s Thesis of Chinese Academy of Agricultural Sciences, 2013(in Chinese).
    [32] 龙丹丹, 叶淑红, 燕欣悦, 王琛郴, 崔艳平, 张彧. 黄褐假单胞菌Y11产胞外多糖发酵条件优化及其抗氧化活性研究[J]. 中国酿造, 2024, 43(4): 115-122. LONG DD, YE SH, YAN XY, WANG CC, CUI YP, ZHANG Y. Optimization of fermentation conditions for extracellular polysaccharide production by Pseudomonas syringae Y11 and its antioxidant activity[J]. China Brewing, 2024, 43(4): 115-122(in Chinese).
    [33] 曹永强, 王辑, 赵笑, 杨贞耐. 植物乳杆菌YW11生产胞外多糖的发酵条件研究[J]. 食品科学技术学报, 2016, 34(1): 42-49, 78. CAO YQ, WANG J, ZHAO X, YANG ZN. Optimization of fermentation conditions of Lactobacillus plantarum YW11 for exopolysaccharides production[J]. Journal of Food Science and Technology, 2016, 34(1): 42-49, 78(in Chinese).
    [34] GU Y, LI B, TIAN JJ, WU R, HE YF. The response of LuxS/AI-2 quorum sensing in Lactobacillus fermentum 2-1 to changes in environmental growth conditions[J]. Annals of Microbiology, 2018, 68(5): 287-294.
    [35] 钟华晨. 高产生物膜乳酸菌的筛选、鉴定及胞外多糖分泌条件的研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2019. ZHONG HC. Screening and identification of lactic acid bacteria with high biofilm production and study on extracellular polysaccharide secretion conditions[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2019(in Chinese).
    [36] 冯美琴. 植物乳杆菌胞外多糖发酵、结构鉴定及其功能特性研究[D]. 南京: 南京农业大学博士学位论文, 2012. FENG MQ. Fermentation, structural identification and functional characteristics of extracellular polysaccharide from Lactobacillus plantarum[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2012(in Chinese).
    [37] ZHANG D, BAO YL, MA Z, ZHOU JW, CHEN HC, LU YL, ZHU LJ, CHEN XL. Optimization of fermentation medium and conditions for enhancing valinomycin production by Streptomyces sp. ZJUT-IFE-354[J]. Preparative Biochemistry & Biotechnology, 2023, 53(2): 157-166.
    [38] AI LZ, Zhang H, Guo BH, CHEN W, WU ZJ, TANG J. Optimization of culture conditions for exopolysaccharide production by Lactobacillus casei LC2W[J]. Agricultural and Food Science, 2006, 61(4): 374-377.
    [39] 周渤森, 曹慧莹, 齐心彤, 于连升, 杨义, 葛菁萍, 宋刚, 杜仁鹏. 植物乳杆菌HDL-03胞外多糖合成条件的优化研究[J]. 中国农学通报, 2024, 40(11): 14-21. ZHOU BS, CAO HY, QI XT, YU LS, YANG Y, GE JP, SONG G, DU RP. Exopolysaccharides from Lactiplantibacillus plantarum HDL-03: synthesis conditions optimization[J]. Chinese Agricultural Science Bulletin, 2024, 40(11): 14-21(in Chinese).
    [40] GU Y, TIAN JJ, ZHANG Y, WU R, LI LJ, ZHANG BJ, HE YF. Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum[J]. Journal of Bioscience and Bioengineering, 2021, 131(2): 153-160.
    [41] WANG Y, YI L, ZHANG ZC, FAN HJ, CHENG XC, LU CP. Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer-2 signaling[J]. Current Microbiology, 2014, 68(5): 575-580.
    Related
    Cited by
Get Citation

ZHANG Jing, GU Yue, TIAN Jianjun, HE Yinfeng. Exopolysaccharides secretion of Limosilactobacillus fermentum 2-1 based on AI-2 activity[J]. Microbiology China, 2025, 52(3): 1234-1249

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 17,2024
  • Adopted:July 31,2024
  • Online: March 19,2025
Article QR Code