Discovery, purification, enzymatic characterization, and recombinant expression of a novel transglutaminase
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Background] Transglutaminase EC 2.3.2.13 (TGase) catalyzes cross-linking between the γ-carboxamido group of glutamine residues and the ε-amino group of lysine residues. This process leads to the formation of an isopeptide bond, which modulates the conformation and functions of proteins. TGases play a crucial role in food, pharmaceutical, textile, and leather processing industries. [Objective] To mine a high-performance TGase from natural Streptomyces mobaraensis and enhance the titer of this enzyme by recombinant expression in the industrial chassis. [Methods] The TGase production potential of S.mobaraensis (CGMCC 4.266) was evaluated by shake-flask fermentation. The TGase (TGe) was purified by Capto S cation exchange chromatography. The enzymatic properties including optimal pH, pH stability, optimal temperature, thermal stability, and cross-linking ability with casein were evaluated. We knocked out tg from industrial S. mobaraensisand obtained Δtg, in which tge was introduced and expressed. [Results] TGe showcased the optimal pH 5.0, with high activity within the range of pH 4.0–10.0. This enzyme achieved the highest activity at approximately 50 ℃, which was comparable to that of commercially available TGases. TGe exhibited good stability within 4–40 ℃, and its activity surpassed those of commercial TGases at 40–65 ℃. In addition, TGe demonstrated higher cross-linking ability with casein at 50 ℃ than commercial TGases. The recombinant expression of tge in Δtg increased the TGe titer (6.3 U/mL) by 162.5% compared with the wild-type strain, without compromising the catalytic activity of TGe. [Conclusion] High-performance TGases can be mined from natural S. mobaraensis. The heterologous expression of TGases in mature industrial strains gives a novel insight into enhancing the TGase titer of S.mobaraensis.

    Reference
    Related
    Cited by
Get Citation

YANG Keke, LI Zilong, XIU Han, LI Guoying, QIN Huimin, WANG Weishan. Discovery, purification, enzymatic characterization, and recombinant expression of a novel transglutaminase[J]. Microbiology China, 2024, 51(12): 5090-5104

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 03,2024
  • Revised:
  • Adopted:May 13,2024
  • Online: December 24,2024
  • Published: December 20,2024
Article QR Code