Application of multiple culture media in characterization of microbial diversity in the crested ibis gut
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [60]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] The gut microorganisms are closely associated with host health. As a first-class protected species in China, investigating the composition and structure of the gut microbiota in crested ibises holds significant importance for the restoration of their population. [Objective] To investigate the microbial diversity (cultivable microorganisms) in the gut of crested ibis (Nipponia nippon) and explore the beneficial microbial resources. [Methods] We used eighteen subtypes of culture media belonging to three main types to isolate gut bacteria from healthy adult crested ibises. The isolated bacteria were identified and analyzed by 16S rRNA gene amplification and sequence analysis. [Results] A total of 1 245 bacterial strains were isolated and identified as 82 species belonging to 22 genera of three phyla. The dominant phylum was Proteobacteria, with the isolates accounting for 71.00% of the total isolates. Proteobacteria and Bacilli were the dominant classes, with the isolates accounting for 71.00% and 27.23%, respectively. Escherichia was the dominant genus, with the isolates accounting for 46.75% of the total isolates. Basic media constituted the first type, including nine subtypes, on which 561 bacterial strains were isolated, primarily including Escherichia, Pseudomonas, Enterococcus, and Streptomyces belonging to Actinomycetota. The media supplemented with fecal supernatant constituted the second type, including six subtypes, on which 539 bacterial strains were isolated, predominantly including Pseudomonas, Bacillus, Vagococcus, Clostridium, Exiguobacterium, and Lysinibacillus. The media supplemented with fish were the third type, including three subtypes, on which 145 bacterial strains were isolated, predominantly including Aeromonas, Citrobacter, Hafnia, and Obesumbacterium. The three main types of media exhibited different selectivity toward microorganisms at various taxonomic levels. The dominant phylum isolated by MRS and MRS selective media was Firmicutes, while that isolated by other media was Proteobacteria. Among the 96 strains of Enterococcus, 82 strains were reported to have probiotic effects, accounting for 6.59% of the total isolates. Additionally, 62 strains were identified as potential new species, accounting for 4.98% of the total isolates, and they were mainly isolated by the basic media and the media supplemented with fecal supernatant. [Conclusion] We employed multiple culture media to investigate the microbial diversity in the crested ibis gut. The findings enriched the variety of microorganisms found in the crested ibis gut, lay a solid foundation for the future exploration of gut microbial resources in the crested ibis, and accumulate a wealth of rare strain resources for the development of beneficial microorganisms.

    Reference
    [1] KIM HB, BOREWICZ K, WHITE BA, SINGER RS, SREEVATSAN S, TU ZJ, ISAACSON RE. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15485-15490.
    [2] MAYNARD CL, ELSON CO, HATTON RD, WEAVER CT. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241.
    [3] SOMMER F, BÄCKHED F. The gut microbiota: Masters of host development and physiology[J]. Nature Reviews Microbiology, 2013, 11(4): 227-238.
    [4] TREMAROLI V, BÄCKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249.
    [5] FUENTES S, ROSSEN NG, van der SPEK MJ, HARTMAN JH, HUUSKONEN L, KORPELA K, SALOJÄRVI J, AALVINK S, de VOS WM, D’HAENS GR, ZOETENDAL EG, PONSIOEN CY. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation[J]. The ISME Journal, 2017, 11(8): 1877-1889.
    [6] KELLY CR, IHUNNAH C, FISCHER M, KHORUTS A, SURAWICZ C, AFZALI A, ARONIADIS O, BARTO A, BORODY T, GIOVANELLI A, GORDON S, GLUCK M, HOHMANN EL, KAO DN, KAO JY, McQUILLEN DP, MELLOW M, RANK KM, RAO K, RAY A, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients[J]. The American Journal of Gastroenterology, 2014, 109(7): 1065-1071.
    [7] LIU SX, LI YH, DAI WK, LI XS, QIU CZ, RUAN ML, ZOU B, DONG C, LIU YH, HE JY, HUANG ZH, SHU SN. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment[J]. World Journal of Gastroenterology, 2017, 23(48): 8570-8581.
    [8] LEE P, YACYSHYN BR, YACYSHYN MB. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT)[J]. Diabetes, Obesity & Metabolism, 2019, 21(3): 479-490.
    [9] THOMAS CM, VERSALOVIC J. Probiotics-host communication: Modulation of signaling pathways in the intestine[J]. Gut Microbes, 2010, 1(3): 148-163.
    [10] ZHU Y, LI YD, YANG HQ, HE K, TANG KY. Establishment of gut microbiome during early life and its relationship with growth in endangered crested Ibis (Nipponia nippon)[J]. Frontiers in Microbiology, 2021, 12: 723682.
    [11] SOLDEN L, LLOYD K, WRIGHTON K. The bright side of microbial dark matter: lessons learned from the uncultivated majority[J]. Current Opinion in Microbiology, 2016, 31: 217-226.
    [12] XIAO Y, WANG JY, SUN PD, DING T, LI JY, DENG Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: a review[J]. International Journal of Food Microbiology, 2025, 426: 110901.
    [13] CAVICCHIOLI R, OSTROWSKI M, FEGATELLA F, GOODCHILD A, GUIXA-BOIXEREU N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis)[J]. Microbial Ecology, 2003, 45(3): 203-217.
    [14] VARTOUKIAN SR. Cultivation strategies for growth of uncultivated bacteria[J]. Journal of Oral Biosciences, 2016, 58(4): 143-149.
    [15] 史怀平, 杨增岐, 操胜. 健康朱鹮消化道正常菌群的分离与鉴定[J]. 西北农林科技大学学报(自然科学版), 2008, 36(3): 69-74. SHI HP, YANG ZQ, CAO S. Isolation and Identification of normal flora in healthy Nipponia nippon enteron[J]. Journal of Northwest A & F University (Natural Science Edition), 2008, 36(3): 69-74 (in Chinese).
    [16] Hafeez ul Haq, 张沁怡, 黎烨, 陈明波, 薛海曌, 罗成松, 方行, 刘平平, 蒋宁成, 张婷, 熊娟, 田宝玉. 宠物犬肠道可培养细菌耐药性种类及其分布[J]. 福建农业科技, 2020(4): 9-16. HAQ H, ZHANG QY, LI Y, CHEN MB, XUE HZ, LUO CS, FANG H, LIU PP, JIANG NC, ZHANG T, XIONG J, TIAN BY. Types and distribution of the drug resistance of the culturable bacteria in the intestinal tract of pet dogs[J]. Fujian Agricultural Science and Technology, 2020(4): 9-16 (in Chinese).
    [17] 王华健, 兰阿峰, 郭素芬, 段文斌, 王琦, 牛克胜. 朱鹮肠道微生物多样性与产酶活性[J]. 微生物学通报, 2023, 50(9): 4125-4140. WANG HJ, LAN AF, GUO SF, DUAN WB, WANG Q, NIU KS. Intestinal microbial diversity and enzyme activities of crested Ibis[J]. Microbiology China, 2023, 50(9): 4125-4140 (in Chinese).
    [18] 薛正楷, 郑文武, 张宿义. 一株整合型高抗性高效发酵己酸菌的选育研究[J]. 中国酿造, 2020, 39(8): 143-150. XUE ZK, ZHENG WW, ZHANG SY. Breeding of an integrated strain with high resistance and highly efficient fermentation for caproic acid production[J]. China Brewing, 2020, 39(8): 143-150 (in Chinese).
    [19] 万文结, 刘月, 薛芷筠, 张泽文, 程国军, 李晓华, 何冬兰. 纤维素降解菌Arthrobacter oryzae HW-17的纤维素降解特性及纤维素酶学性质[J]. 环境科学学报, 2017, 37(10): 3679-3686. WAN WJ, LIU Y, XUE ZJ, ZHANG ZW, CHENG GJ, LI XH, HE DL. Cellulose degradation characteristics and cellulase properties of cellulose-decomposing bacterium Arthrobacter oryzae HW-17[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3679-3686 (in Chinese).
    [20] 王贺祥. 农业微生物学[M]. 北京: 中国农业大学出版社, 2003: 345-346. WANG HX. Agricultural microbiology[M]. Beijing: China Agricultural University Press, 2003: 345-346 (in Chinese).
    [21] WEISBURG WG, BARNS SM, PELLETIER DA, LANE DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.
    [22] KIM M, OH HS, PARK SC, CHUN J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.
    [23] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [24] LAGIER JC, HUGON P, KHELAIFIA S, FOURNIER PE, SCOLA BL, RAOULT D. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota[J]. Clinical Microbiology Reviews, 2015, 28(1): 237-264.
    [25] 孙创, 王金燕, 张钰琳, 张蕴慧, 朱晓雨, 陈朝晖, 张晓华. 利用改良培养基探究西太平洋海水可培养细菌多样性[J]. 微生物学报, 2021, 61(4): 845-861. SUN C, WANG JY, ZHANG YL, ZHANG YH, ZHU XY, CHEN ZH, ZHANG XH. Exploring the diversity of cultivated bacteria in the Western Pacific waters through improved culture media[J]. Acta Microbiologica Sinica, 2021, 61(4): 845-861 (in Chinese).
    [26] 宋乐辉. 鸡源性粪肠球菌的分离及益生特性研究[D]. 南昌: 江西农业大学, 2023. SONG LH. Isolation of Enterococcus faecalis from Chickens Caecum and Studies on itsProbiotic Properties[D]. Nanchang: Jiangxi Agricultural University, 2023 (in Chinese).
    [27] HAMID NH, DAUD HM, KAYANSAMRUAI P, HASSIM HA, MOHD YMS, ABU BSN, SRISAPOOME P. Short- and long-term probiotic effects of Enterococcus hirae isolated from fermented vegetable wastes on the growth, immune responses, and disease resistance of hybrid catfish (Clarias gariepinus × Clarias macrocephalus)[J]. Fish and Shellfish Immunology, 2021, 114: 1-19.
    [28] 田相利, 刘云慧, 刘怡君, 汪仕爽, 罗凯, 刘杨, 秦光彩, 范瑞用. 添加不同形式屎肠球菌对凡纳对虾生长性能、非特异免疫及抗病力影响的比较研究[J]. 中国海洋大学学报(自然科学版), 2024, 54(10): 179-189. TIAN XL, LIU YH, LIU YJ, WANG SS, LUO K, LIU Y, QIN GC, FAN RY. Effects of Enterococcus faecium in different forms on the growth performance, non-specific immunity and disease resistance of Penaeus vannamei[J]. Periodical of Ocean University of China, 2024, 54(10): 179-189.
    [29] 高雅茹. 乳肠球菌ID4细菌素的作用机制及其对口腔菌群影响的研究[D]. 无锡: 江南大学, 2024. GAO YR. Study on mechanism of Enterococcus lactis ID4bacteriocin and its effect on the oral flora[D]. Wuxin: Jiangnan University, 2024.
    [30] SIMONE P, TIANE MM, ANA PVC, ROBSON A, ANA PGF, FLAVIO AOC, ADRIANO B. Evaluation of resistance genes and virulence factors in a food isolated Enterococcus durans with potential probiotic effect[J]. Food Control, 2015, 51: 49-54.
    [31] ZILBER-ROSENBERG I, ROSENBERG E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[J]. FEMS Microbiology Reviews, 2008, 32(5): 723-735.
    [32] NICHOLSON JK, HOLMES E, KINROSS J, BURCELIN R, GIBSON G, JIA W, PETTERSSON S. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267.
    [33] KOGUT MH, LEE A, SANTIN E. Microbiome and pathogen interaction with the immune system[J]. Poultry Science, 2020, 99(4): 1906-1913.
    [34] LYNCH SV, PEDERSEN O. The human intestinal microbiome in health and disease[J]. The New England Journal of Medicine, 2016, 375(24): 2369-2379.
    [35] RIPPLE WJ, BESCHTA RL, FORTIN JK, ROBBINS CT. Trophic cascades from wolves to grizzly bears in Yellowstone[J]. Journal of Animal Ecology, 2014, 83(1): 223-233.
    [36] VACHER C, HAMPE A, PORTÉ AJ, SAUER U, COMPANT S, MORRIS CE. The phyllosphere: microbial jungle at the plant–climate interface[J]. Annual Review of Ecology, Evolution, and Systematics, 2016, 47: 1-24.
    [37] 孟凡凡, 胡盎, 王建军. 微生物性状揭示物种分布格局、群落构建机制和生态系统功能[J]. 微生物学报, 2020, 60(9): 1784-1800. MENG FF, HU A, WANG JJ. Microbial traits shed light on species distributions, assembly processes and ecosystem functions[J]. Acta Microbiologica Sinica, 2020, 60(9): 1784-1800 (in Chinese).
    [38] LAGIER JC, KHELAIFIA S, ALOU MT, NDONGO S, DIONE N, HUGON P, CAPUTO A, CADORET F, TRAORE SI, SECK EH, DUBOURG G, DURAND G, MOUREMBOU G, GUILHOT E, TOGO A, BELLALI S, BACHAR D, CASSIR N, BITTAR F, DELERCE J, et al. Culture of previously uncultured members of the human gut microbiota by culturomics[J]. Nature Microbiology, 2016, 1: 16203.
    [39] MICHAEL JANDA J, ABBOTT SL. The genus Aeromonas: taxonomy, pathogenicity, and infection[J]. Clinical Microbiology Reviews, 2010, 23(1): 35-73.
    [40] AUSTIN B, AUSTIN DA. Bacterial fish pathogens: disease of farmed and wild fish[M]. Sixth edition. Switzerland: Springer, 2016: 1-552.
    [41] SU HW, McKELVEY J, ROLLINS D, ZHANG M, BRIGHTSMITH DJ, DERR J, ZHANG SP. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus): a new reservoir of antimicrobial resistance?[J]. PLoS One, 2014, 9(6): e99826.
    [42] CAHILL MM. Bacterial flora of fishes: a review[J]. Microbial Ecology, 1990, 19(1): 21-41.
    [43] SPERGSER J, LONCARIC I, TICHY A, FRITZ J, SCOPE A. The cultivable autochthonous microbiota of the critically endangered Northern bald Ibis (Geronticus eremita)[J]. PLoS One, 2018, 13(4): e0195255.
    [44] 张晓华. 海洋微生物学[M]. 青岛: 中国海洋大学出版社, 2007: 332-333. ZHANG XH. Marine microbiology[M]. Qingdao, China: China Ocean University Press, 2007: 332-333 (in Chinese).
    [45] 张秀明, 张晓华. 海洋微生物培养新技术的研究进展[J]. 海洋科学, 2009, 33(6): 99-104. ZHANG XM, ZHANG XH. Newculture approaches of marine microorganisms[J]. Marine Sciences, 2009, 33(6): 99-104 (in Chinese).
    [46] ZHANG XH, AHMAD W, ZHU XY, CHEN JX, AUSTIN B. Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms[J]. Marine Life Science & Technology, 2020, 3(2): 189-203.
    [47] 黄自然, 韩妮, 常宇骁, 李蕙敏, 丁磊, 谭亚芳, 毕玉晶, 杨瑞馥, 吴家红. 人体肠道细菌寡营养培养组条件的优化研究[J]. 微生物学报, 2023, 63(9): 3641-3652. HUANG ZR, HAN N, CHANG YX, LI HM, DING L, TAN YF, BI YJ, YANG RF, WU JH. Optimization of oligotrophic culture conditions for human gut bacteria[J]. Acta Microbiologica Sinica, 2023, 63(9): 3641-3652 (in Chinese).
    [48] LAGIER JC, ARMOUGOM F, MILLION M, HUGON P, PAGNIER I, ROBERT C, BITTAR F, FOURNOUS G, GIMENEZ G, MARANINCHI M, TRAPE JF, KOONIN EV, SCOLA BL, RAOULT D. Microbial culturomics: paradigm shift in the human gut microbiome study[J]. Clinical Microbiology and Infection, 2012, 18(12): 1185-1193.
    [49] GOODMAN AL, KALLSTROM G, FAITH JJ, REYES A, MOORE A, DANTAS G, GORDON JI. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6252-6257.
    [50] 申俊华, 赵小刚, 郭吉余, 苏勇. 胃酸分泌的化学感应及其对氮营养素应答的研究进展[J]. 中国畜牧杂志, 2022, 58(12): 36-40. SHEN JH, ZHAO XG, GUO JY, SU Y. Advances in chemosensing of gastric acid secretion and its response to nitrogen nutrient[J]. Chinese Journal of Animal Science, 2022, 58(12): 36-40 (in Chinese).
    [51] 鲁旭, 张影, 曾明. 益生性肠球菌安全性评价研究进展与监管[J]. 中国药事, 2019, 33(5): 555-560. LU X, ZHANG Y, ZENG M. Research progress and regulation of safety evaluation of probiotic Enterococcus[J]. Chinese Pharmaceutical Affairs, 2019, 33(5): 555-560 (in Chinese).
    [52] AVRAM-HANANEL L, STOCK J, PARLESAK A, BODE C, SCHWARTZ B. E. durans strain M4-5 isolated from human colonic flora attenuates intestinal inflammation[J]. Diseases of the Colon and Rectum, 2010, 53(12): 1676-1686.
    [53] RAN HN, SUN MH, JUNG EL, HEE LY. Effect of Enterococcus faecalis strain PL9003 on adherence and growth of Helicobacter pylori[J]. Journal of Microbiology and Biotechnology, 2002, 12(5): 746-752.
    [54] BOGUT I, MILAKOVIĆ Z, KRISTEK S, NOVOSELIĆ D, BUKVIĆ Ž. Effects of Enterococcus faecium on the growth rate and content of intestinal microflora in sheat fish (Silurus glanis)[J]. Veterinarni Medicina, 2000, 45(4): 107-109.
    [55] 贺曦, 徐淑琴, 马祥兆, 陈晓慧, 贺晓龙, 冶贵生. 藏羊源肠道海氏肠球菌的分离鉴定及益生特性研究[J]. 黑龙江畜牧兽医, 2021(22): 63-68, 150. HE X, XU SQ, MA XZ, CHEN XH, HE XL, YE GS. Isolation, identification, and probiotic characteristics of Enterococcus hirae from Tibetan sheep intestines[J]. Heilongjiang Animal Science and Veterinary Medicine, 2021(22): 63-68, 150 (in Chinese).
    [56] FU XM, LYU L, WANG Y, ZHANG Y, GUO XK, CHEN Q, LIU C. Safety assessment and probiotic characteristics of Enterococcus lactis JDM1[J]. Microbial Pathogenesis, 2022, 163: 105380.
    [57] 李虎. 肠道益生菌在家禽生产中的应用进展[J]. 中国畜牧业, 2023(21): 39-40. LI H. Progress in application of intestinal probiotics in poultry production[J]. China Animal Industry, 2023(21): 39-40 (in Chinese).
    [58] 张曼, 潘广林, 梁武龙, 王华, 李然, 张瑞, 柴佳, 叶超, 张耀相. 秦岭大熊猫肠道益生菌的分离鉴定[J]. 动物医学进展, 2016, 37(1): 125-129. ZHANG M, PAN GL, LIANG WL, WANG H, LI R, ZHANG R, CHAI J, YE C, ZHANG YX. Isolation and identification of probiotics from giant pandas in Qinling Mountains[J]. Progress in Veterinary Medicine, 2016, 37(1): 125-129 (in Chinese).
    [59] 魏明颖, 王玉涵, 杨倩, 贾丽娜. 肠道益生菌功能特性研究进展[J]. 粮食与油脂, 2020, 33(4): 14-16. WEI MY, WANG YH, YANG Q, JIA LN. Research progress of functional properties of intestinal probiotics[J]. Cereals & Oils, 2020, 33(4): 14-16 (in Chinese).
    [60] 曲巍, 张智, 马建章, 刘慧, 雅男. 高通量测序研究益生菌对小鼠肠道菌群的影响[J]. 食品科学, 2017, 38(1): 214-219. QU W, ZHANG Z, MA JZ, LIU H, YA N. Effect of probiotics on gut microbiota in mice evaluated by high-throughput sequencing[J]. Food Science, 2017, 38(1): 214-219 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LAN Afeng, LI Lingyi, WANG Huajian, GUO Sufen, WANG Qi. Application of multiple culture media in characterization of microbial diversity in the crested ibis gut[J]. Microbiology China, 2025, 52(4): 1673-1696

Copy
Related Videos

Share
Article Metrics
  • Abstract:24
  • PDF: 28
  • HTML: 34
  • Cited by: 0
History
  • Received:July 22,2024
  • Adopted:August 31,2024
  • Online: April 21,2025
  • Published: April 20,2025
Article QR Code