Bioactivities of Pseudomonas aeruginosa HZ15
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] We have discovered that Pseudomonas aeruginosa HZ15 isolated from Macrobrochis gigas has a strong antagonistic effect against tobacco black shank. However, other biological activities of this strain remain to be explored. [Objective] To investigate the bioactivities of strain HZ15 in agriculture and provide a theoretical basis for the application of this strain in agricultural production and the development of biocontrol agents with this strain. [Methods] The agar diffusion method, plate confrontation, feeding method, bioassay, and pot and field experiments were employed to examine the antimicrobial, plant growth-promoting, insecticidal, and herbicidal (against ryegrass) activities of strain HZ15. [Results] Strain HZ15 showcased strong inhibitory activities against four species of plant pathogenic bacteria and the inhibition rates over 60% against 11 species of plant pathogenic fungi, exhibiting a broad antimicrobial spectrum. The pot experiment showed that the strain had a control effect of 52.48% against tobacco bacterial wilt, which was comparable to that of 52% chloroisobromine cyanuric acid·copper sulfate soluble powder diluted by 800 times. The field experiment showed that strain HZ15 significantly increased the number of tobacco leaves and the maximum leaf area. In addition, both strain HZ15 and its secondary metabolites exhibited strong toxicity against Solenopsis invicta and Caenorhabditis elegans, with the supernatant and bacterial culture showing the strongest toxic effects on S. invicta and C. elegans, respectively. In addition, strain HZ15 inhibited the germination of ryegrass by 63.80% and significantly reduced the root length, stem length, and fresh weight of ryegrass. [Conclusion] P. aeruginosa HZ15 possesses antimicrobial, plant growth-promoting, insecticidal, and ryegrass growth-inhibiting activities, demonstrating significant potential for application in agriculture and environmental management.

    Reference
    [1] AMBREETHA S, BALACHANDAR D. Pathogenesis of plant-associated Pseudomonas aeruginosa in Caenorhabditis elegans model[J]. BMC Microbiology, 2022, 22(1): 269.
    [2] AMBREETHA S, MARIMUTHU P, MATHEE K, BALACHANDAR D. Rhizospheric and endophytic Pseudomonas aeruginosa in edible vegetable plants share molecular and metabolic traits with clinical isolates[J]. Journal of Applied Microbiology, 2022, 132(4): 3226-3248.
    [3] GHADAMGAHI F, TARIGHI S, TAHERI P, SARIPELLA GV, ANZALONE A, KALYANDURG PB, CATARA V, ORTIZ R, VETUKURI RR. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens[J]. Biology, 2022, 11(1): 140.
    [4] CHOPRA A, BOBATE S, RAHI P, BANPURKAR A, MAZUMDER PB, SATPUTE S. Pseudomonas aeruginosa RTE4: a tea rhizobacterium with potential for plant growth promotion and biosurfactant production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 861.
    [5] ZHOU L, JIANG HX, SUN S, YANG DD, JIN KM, ZHANG W, HE YW. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1- carboxamide[J]. World Journal of Microbiology & Biotechnology, 2016, 32(3): 50.
    [6] HARIPRASAD P, CHANDRASHEKAR S, BRIJESH SINGH S, NIRANJANA SR. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa[J]. Journal of Basic Microbiology, 2014, 54(8): 792-801.
    [7] WANG XY, ZHOU XN, CAI ZB, GUO L, CHEN XL, CHEN X, LIU JY, FENG MF, QIU YW, ZHANG Y, WANG AX. A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato[J]. Pathogens, 2020, 10(1): 22.
    [8] 梁卫驱, 胡珊, 黄皓, 郑伟才, 喻孟君, 陈彦, 陈淑慰, 徐匆, 罗华建, 刘孝龙. 植物根际促生菌F13的筛选、鉴定及对豆角促生、抗病的效果[J]. 中山大学学报(自然科学版)(中英文), 2024, 63(2): 150-159. LIANG WQ, HU S, HUANG H, ZHENG WC, YU MJ, CHEN Y, CHEN SW, XU C, LUO HJ, LIU XL. Screening and identification of plant growth-promoting rhizobacteria F13 and its effect on growth promotion and disease resistance of cowpea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2024, 63(2): 150-159 (in Chinese).
    [9] NGUYEN DN, WANG SL, NGUYEN AD, DOAN MD, TRAN DM, NGUYEN TH, NGO VA, DOAN CT, TRAN TN, DO VC, NGUYEN VB. Potential application of rhizobacteria isolated from the central highland of Vietnam as an effective biocontrol agent of robusta coffee nematodes and as a bio-fertilizer[J]. Agronomy, 2021, 11(9): 1887.
    [10] UZMA M, IQBAL A, HASNAIN S. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna Radiata[J]. PLoS One, 2022, 17(2): e0262932.
    [11] 汪敦飞, 郑新宇, 肖清铁, 王微, 林瑞余. 铜绿假单胞菌对镉胁迫苗期水稻根系活力及叶片生理特性的影响[J]. 应用生态学报, 2019, 30(8): 2767-2774. WANG DF, ZHENG XY, XIAO QT, WANG W, LIN RY. Effects of Pseudomonas aeruginosa on root activity and leaf physiological characteristics in rice (Oryza sativa L.) seedling under cadmium stress[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2767-2774 (in Chinese).
    [12] 贺丽娜, 冯源, 石慧敏, 叶建仁. 具有杀线活性马尾松内生细菌的筛选与鉴定[J]. 生物技术通报, 2022, 38(8): 159-166. HE LN, FENG Y, SHI HM, YE JR. Screening and identification of endophytic bacteria with nematicidal activity against Bursaphelenchus xylophilus in Pinus massoniana[J]. Biotechnology Bulletin, 2022, 38(8): 159-166 (in Chinese).
    [13] BODYKEVICH G, de LEON MA, LI S, TOM K. Cloning chiC from insecticidal Pseudomonas aeruginosa PAO1[J]. Undergraduate Journal of Experimental Microbiology and Immunology, 2022: 27.
    [14] 牛洪涛, 郭慧芳, 李永腾, 刘宝生. 蚜虫病原细菌的分离鉴定及其对褐飞虱的杀虫活性初探[J]. 农药学学报, 2015, 17(5): 538-543. NIU HT, GUO HF, LI YT, LIU BS. Isolation and identification of an entomopathogenic bacterium from aphids and preliminary study of its efficacy against Nilaparvata lugens[J]. Chinese Journal of Pesticide Science, 2015, 17(5): 538-543 (in Chinese).
    [15] ADETUNJI CO, OLOKE JK, BELLO OM, PRADEEP M, JOLLY RS. Isolation, structural elucidation and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil[J]. Environmental Technology & Innovation, 2019, 13: 304-317.
    [16] LAWRANCE S, VARGHESE S, VARGHESE EM, ASOK AK, JISHA M S. Quinoline derivatives producing Pseudomonas aeruginosa H6 as an efficient bioherbicide for weed management[J]. Biocatalysis and Agricultural Biotechnology, 2019, 18: 101096.
    [17] LAKSHMI V, KUMARI S, SINGH A, PRABHA C. Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings[J]. Journal of King Saud University - Science, 2015, 27(2): 113-119.
    [18] WU T, XU J, XIE WJ, YAO ZG, YANG HJ, SUN CL, LI XB. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis)[J]. Frontiers in Microbiology, 2018, 9: 1087.
    [19] 曾舒泉, 钮徐融, 魏聪聪, 何明川, 兰明先, 谢永辉, 王志江, 詹莜国, 吴国星, 金红岗. 烟草黑胫病拮抗菌HZ15的发酵条件优化[J]. 江西农业学报, 2021, 33(12): 14-20. ZENG SQ, NIU XR, WEI CC, HE MC, LAN MX, XIE YH, WANG ZJ, ZHAN YG, WU GX, JIN HG. Optimization of fermentation conditions for antagonistic bacterium HZ15 against tobacco black shank[J]. Acta Agriculturae Jiangxi, 2021, 33(12): 14-20 (in Chinese).
    [20] 汤永玉, 吴国星, 朱国渊, 李冉, 施春兰, 王思洁, 杨燕通, 高熹. 附子白绢病菌拮抗菌的鉴定、发酵条件优化及抑菌效果[J]. 微生物学通报, 2023, 50(7): 2892-2906. TANG YY, WU GX, ZHU GY, LI R, SHI CL, WANG SJ, YANG YT, GAO X. Identification, fermentation condition optimization, and effect of a strain against Sclerotium rolfsii in Aconitum carmichaeli[J]. Microbiology China, 2023, 50(7): 2892-2906 (in Chinese).
    [21] 宁豫昌, 吴祖芳, 龚婷. 贝莱斯芽孢杆菌的生物学特性研究[J]. 中国兽医杂志, 2022, 58(7): 25-32. NING YC, WU ZF, GONG T. Study on the biological characteristics of Bacillus velezensis strain[J]. Chinese Journal of Veterinary Medicine, 2022, 58(7): 25-32 (in Chinese).
    [22] 施春兰, 吴国星, 赵长飞, 杨燕通, 万丽娜, 田永明, 刘正玲, 谢永辉, 詹莜国, 顾小飞. 球孢白僵菌和爪哇虫草菌对烟草青枯病的防效效果[J]. 微生物学通报, 2024, 51(8): 2974-2985. SHI CL, WU GX, ZHAO CF, YANG YT, WAN LN, TIAN YM, LIU ZL, XIE YH, ZHAN YG, GU XF. Control effect of tobacco bacterial wilt by Beauveria bassiana and Cordyceps javanica[J]. Microbiology China, 2024, 51(8): 2974-2985 (in Chinese).
    [23] 施春兰, 朱国渊, 秦得强, 叶坤浩, 杨丽, 魏朝霞, 曾华兰, 叶鹏盛, 吴国星. 附子白绢病拮抗细菌CZ1的分离鉴定、发酵条件优化及防效测定[J]. 微生物学通报, 2023, 50(10): 4485-4498. SHI CL, ZHU GY, QIN DQ, YE KH, YANG L, WEI ZX, ZENG HL, YE PS, WU GX. An antagonistic bacterial strain CZ1 against southern blight on Aconitum carmichaelii: isolation, identification, optimization of fermentation conditions, and evaluation of control effect[J]. Microbiology China, 2023, 50(10): 4485-4498 (in Chinese).
    [24] SHI CL, ZENG SQ, GAO X, HUSSAIN M, HE MC, NIU XR, WEI CC, YANG R, LAN MX, XIE YH, WANG ZJ, WU GX, TANG P. Complete genome sequence analysis of Bacillus subtilis MC4-2 strain that against tobacco black shank disease[J]. International Journal of Genomics, 2024, 2024: 8846747.
    [25] 宋健, 刘国祥, 佟英, 王琰琰, 李媛, 张兴伟, 戴培刚. 不同发育时期烟草叶数和叶面积的QTL动态分析[J]. 分子植物育种, 2019, 17(18): 6047-6052. SONG J, LIU GX, TONG Y, WANG YY, LI Y, ZHANG XW, DAI PG. Dynamic QTL analysis of leaf number and leaf area in tobacco at different developmental stages[J]. Molecular Plant Breeding, 2019, 17(18): 6047-6052 (in Chinese).
    [26] 梁钰铃, 潘凤香, 梁铭荣, 陆永跃. 4种新烟碱类药剂对红火蚁有翅生殖蚁及幼虫的胃毒毒力传递作用[J]. 植物检疫, 2023, 37(5): 6-10. LIANG YL, PAN FX, LIANG MR, LU YY. Stomach toxicity transfer of four neonicotinoid chemicals to the alate reproductive ants and larvae of red imported fire ant[J]. Plant Quarantine, 2023, 37(5): 6-10 (in Chinese).
    [27] 张娇, 侯微, 王英平. 红参水提物对秀丽隐杆线虫寿命的影响[J]. 吉林农业大学学报, 2024, 46(1): 86-91. ZHANG J, HOU W, WANG YP. Effect of red ginseng water extract on senescence index of cae-norhabditis elegans[J]. Journal of Jilin Agricultural University, 2024, 46(1): 86-91 (in Chinese).
    [28] MIKULIC-PETKOVSEK M, VEBERIC R, HUDINA M, MISIC E. HPLC-DAD-MS identification and quantification of phenolic components in Japanese knotweed and American pokeweed extracts and their phytotoxic effect on seed germination[J]. Plants, 2022, 11(22): 3053.
    [29] 肖咪云, 孙孟龙, 阮楚晋, 陈寿昆, 刘裕华, 陆祖军. 生防细菌2016NX1对病原真菌的抑制及发酵条件优化[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 168-178. XIAO MY, SUN ML, RUAN CJ, CHEN SK, LIU YH, LU ZJ. Inhibitory effect of biocontrol bacterium 2016NX1 on plant pathogenic fungi and optimization of fermentation conditions[J]. Journal of Guangxi Normal University (Natural Science Edition), 2019, 37(2): 168-178 (in Chinese).
    [30] 楚文琢, 彭双强, 廖晓兰, 马文月. 铜绿假单胞菌SU8发酵液与乙蒜素混配对草莓灰霉病的防效[J]. 江苏农业科学, 2017, 45(6): 79-83. CHU WZ, PENG SQ, LIAO XL, MA WY. Control effect of Pseudomonas aeruginosa SU8 fermentation broth mixed with allicin on strawberry gray mold disease[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 79-83 (in Chinese).
    [31] 蒋海霞, 周莲, 何亚文. 铜绿假单胞菌生防菌株抑菌代谢产物及其生防应用研究进展[J]. 微生物学通报, 2015, 42(7): 1338-1349. JIANG HX, ZHOU L, HE YW. Research progress in biocontrol strain Pseudomonas aeruginosa: antifungal metabolites and their applications in biocontrol[J]. Microbiology China, 2015, 42(7): 1338-1349 (in Chinese).
    [32] FRESCHI L, VINCENT AT, JEUKENS J, EMOND-RHEAULT JG, KUKAVICA-IBRULJ I, DUPONT MJ, CHARETTE SJ, BOYLE B, LEVESQUE RC. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity[J]. Genome Biology and Evolution, 2019, 11(1): 109-120.
    [33] 杨德伟, 施春兰, 曾舒泉, 解紫薇, 秦小萍, 秦得强, 高熹, 顾小飞, 谢永辉, 吴国星. 铜绿假单胞菌HZ15全基因组和比较基因组学分析[J]. 南方农业学报, 2024, 55(9): 2653-2664. YANG DW, SHI CL, ZENG SQ, XIE ZW, QIN XP, QIN DQ, GAO X, GU XF, XIE YH, WU GX. Whole-genome and comparative genomic analysis of Pseudomonas aeruginosa strain HZ15[J]. Journal of Southern Agriculture, 2024, 55(9): 2653-2664 (in Chinese).
    [34] 胡军华, 张伏军, 蓝希钳, 林立鹏, 唐婧, 马淑华, 谢洁, 肖杰, 潘国庆, 周泽扬. 烟草根际细菌铜绿假单胞菌swu31-2的定殖能力及其对烟草青枯病的防治作用[J]. 植物保护, 2009, 35(5): 89-94. HU JH, ZHANG FJ, LAN XQ, LIN LP, TANG J, MA SH, XIE J, XIAO J, PAN GQ, ZHOU ZY. Analysis of the colonization of tobacco rhizosphere bacterium swu31-2 and its control effect on tobacco bacterial wilt[J]. Plant Protection, 2009, 35(5): 89-94 (in Chinese).
    [35] LI J, ZHENG BF, HU RW, LIU YJ, JING YF, XIAO YH, SUN M, CHEN W, ZHOU QM. Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326[J]. Canadian Journal of Microbiology, 2019, 65(3): 214-223.
    [36] 农向群, 王广君, 王以燕, 张蕾, 高琼华, 于永浩. 白僵菌和绿僵菌作为防控红火蚁生物农药的潜力及前景[J]. 中国生物防治学报, 2023, 39(2): 453-461. NONG XQ, WANG GJ, WANG YY, ZHANG L, GAO QH, YU YH. Potential and prospect of Beauveria bassiana and Metarhizium anisopliae as biological pesticides for the control of red fire ants[J]. Chinese Journal of Biological Control, 2023, 39(2): 453-461 (in Chinese).
    [37] CHIN KL, H’NG PS, LEE CL, WONG WZ, GO WZ, KHOO PS, LUQMAN AC, ASHAARI Z. Application strategies by selective medium treated with entomopathogenic bacteria Serratia marcescens and Pseudomonas aeruginosa as potential biocontrol against Coptotermes curvignathus[J]. Royal Society Open Science, 2021, 8(4): 201311.
    [38] YANG J, CAO HZ, WANG W, ZHANG LH, DONG JG. Isolation, identification, and herbicidal activity of metabolites produced by Pseudomonas aeruginosa CB-4[J]. Journal of Integrative Agriculture, 2014, 13(8): 1719-1726.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YANG Dewei, SHI Chunlan, XIE Ziwei, QIN Xiaoping, QIN Deqiang, GAO Xi, GU Xiaofei, XIE Yonghui, WU Guoxing. Bioactivities of Pseudomonas aeruginosa HZ15[J]. Microbiology China, 2025, 52(4): 1537-1550

Copy
Share
Article Metrics
  • Abstract:31
  • PDF: 29
  • HTML: 46
  • Cited by: 0
History
  • Received:July 22,2024
  • Adopted:August 09,2024
  • Online: April 21,2025
  • Published: April 20,2025
Article QR Code