Bacterial community structure in pig manure composted with a deodorizing strain combination
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [54]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Aerobic composting is a common resource utilization method to treat agricultural solid waste, while odorous gases (NH3 and H2S) generated during the composting process pose a threat to the health of humans and animals. Microbial deodorization has low costs and good effects, while single strains have poor environmental adaptability and limited effects. [Objective] To develop a combination of efficient deodorizing strains and optimize microbial deodorization conditions to address the foul odor in composting. [Methods] The effects of the deodorizing strain combination on the changes of bacterial community structure during composting were studied by screening of deodorizing microbial strains and temperature-controlled simulated composting. Furthermore, the relevant functional genes were analyzed and annotated. [Results] The maximum release of NH3 and H2S from the compost supplemented with the deodorizing strain combination E was only about 40% of that from the compost treated with the commercial microbial agent X. The species classification results show that the phyla with relatively high abundance during composting include Proteobacteria, Actinomycetota, Firmicutes and Bacteroidota. Group E showed higher relative abundance of Proteobacteria and Actinomycetota than groups X and CK. The dominant genera included Pseudomonas, Corynebacterium, and Pseudogracilibacillus, among which Corynebacterium kept being dominant in group E. The annotation results from the KEGG database indicated that the addition of the deodorizing strain combination E promoted the amino acid metabolism in the microbial community during composting. Similarly, functional gene annotation results revealed higher abundance of ammonia assimilation-related genes (gs, gdh, asn, and gln) and the sulfur-containing amino acid synthesis-related gene (cysC), suggesting that the combination E reduced NH3 and H2S emissions by facilitating the conversion of nitrogen and sulfur into amino acids and other organic compounds. [Conclusion] The deodorizing strain combination E can effectively inhibit the release of NH3 and H2S in the manure composting process, providing microbial resources for the treatment of waste gases generated in the manure resource utilization process.

    Reference
    [1] 付嘉琦, 王函韵, 王涛, 桂双林. 猪粪厌氧发酵中的氨抑制及缓解对策[J]. 能源研究与管理, 2022(4): 85-90, 145. FU JQ, WANG HY, WANG T, GUI SL. Ammonia inhibition and mitigation strategies in anaerobic digestion of pig manure[J]. Energy Research and Management, 2022(4): 85-90, 145(in Chinese).
    [2] MARDOYAN A, BRAUN P. Analysis of Czech subsidies for solid biofuels[J]. International Journal of Green Energy, 2015, 12(4): 405-408.
    [3] OUYANG JX, SHI Z, ZHONG H, LIU W, CHAI Q, YUAN XZ. Static aerobic composting of municipal sewage sludge with forced ventilation: Using matured compost as bulking conditioner[J]. Journal of Central South University, 2014, 21(1): 303-309.
    [4] CHI CP, CHU SH, WANG B, ZHANG D, ZHI YE, YANG XJ, ZHOU P. Dynamic bacterial assembly driven by Streptomyces griseorubens JSD-1 inoculants correspond to composting performance in swine manure and rice straw co-composting[J]. Bioresource Technology, 2020, 313: 123692.
    [5] 宋修超, 郭德杰, 成卫民, 罗佳, 徐烨红, 王光飞, 刘新红, 马艳. 工厂化条件下外源添加剂对猪粪堆肥过程中NH3和H2S的减排效果[J]. 农业环境科学学报, 2021, 40(9): 2014-2020. SONG XC, GUO DJ, CHENG WM, LUO J, XU YH, WANG GF, LIU XH, MA Y. Pilot-scale study on effects of exogenous additives on reducing NH3 and H2S emissions from pig manure compost[J]. Journal of Agro-Environment Science, 2021, 40(9): 2014-2020(in Chinese).
    [6] 李永双, 孙波, 陈菊红, 彭霞薇, 白志辉, 庄绪亮. 纳米膜覆盖对畜禽粪便好氧堆肥进程及恶臭气体排放的影响[J]. 环境科学, 2021, 42(11): 5554-5562. LI YS, SUN B, CHEN JH, PENG XW, BAI ZH, ZHUANG XL. Effects of nano-membrane on aerobic composting process and odor emission of livestock manure[J]. Environmental Science, 2021, 42(11): 5554-5562(in Chinese).
    [7] KACPRZAK M, MALIŃSKA K, GROSSER A, SOBIK-SZOŁTYSEK J, WYSTALSKA K, DRÓŻDŻ D, JASIŃSKA A, MEERS E. Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies–environmental aspects[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(8): 914-938.
    [8] HOU TT, ZHOU YJ, CAO X, LI WG, ZHANG SM, ZHAO Y, CHEN L, AN Q, MENG LQ. Effects of microbial inoculum on microbial community and enzyme activity involved in nitrogen-sulfur metabolism during sewage sludge composting[J]. Science of the Total Environment, 2023, 858: 159954.
    [9] XUE JL, YAO YH, LI WS, SHI K, MA GB, QIAO YL, CHENG DL, JIANG Q. Insights into the effects of operating parameters on sulfate reduction performance and microbial pathways in the anaerobic sequencing batch reactor[J]. Chemosphere, 2023, 311: 137134.
    [10] 刘歆, 陈群, 邱玉朗, 李林, 侯国喜, 闫晓刚, 李忠和, 陈龙, 高星爱, 柳冬梅, 翟迪, 闫秋良. 鸡粪堆肥含氮和含硫废气产生机制及控制技术研究进展[J]. 中国畜牧兽医, 2023, 50(5): 2166-2174. LIU X, CHEN Q, QIU YL, LI L, HOU GX, YAN XG, LI ZH, CHEN L, GAO XA, LIU DM, ZHAI D, YAN QL. Research progress on the production mechanism and control technology of chicken manure composting nitrogen-containing and sulfur-containing waste gases[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(5): 2166-2174(in Chinese).
    [11] DENG Z, GENG XY, SHI MZ, CHEN XM, WEI ZM. Effect of different moisture contents on hydrogen sulfide malodorous gas emission during composting[J]. Bioresource Technology, 2023, 380: 129093.
    [12] CHEN L, LI WG, ZHAO Y, ZHANG SM, MENG LQ. Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting[J]. Bioresource Technology, 2022, 362: 127848.
    [13] 吴伟霞, 席北斗, 黄彩红, 李艳红, 李伟, 马彩云, 郭威, 唐朱睿. 有机固废堆肥中产臭及除臭技术的微生物作用机制研究进展[J]. 环境科学研究, 2021, 34(10): 2486-2496. WU WX, XI BD, HUANG CH, LI YH, LI W, MA CY, GUO W, TANG ZR. Review on microbial mechanism of odor generation and deodorization technology during organic solid waste composting[J]. Research of Environmental Sciences, 2021, 34(10): 2486-2496(in Chinese).
    [14] BARBUSINSKI K, KALEMBA K, KASPERCZYK D, URBANIEC K, KOZIK V. Biological methods for odor treatment: a review[J]. Journal of Cleaner Production, 2017, 152: 223-241.
    [15] SHAN GC, LI WG, GAO YJ, TAN WB, XI BD. Additives for reducing nitrogen loss during composting: a review[J]. Journal of Cleaner Production, 2021, 307: 127308.
    [16] 王茄灵, 吕青阳, 刘杨, 许力山, 秦维, 闫志英. 基于原位控制技术的粪污除臭菌剂研发现状[J]. 应用与环境生物学报, 2022, 28(5): 1357-1366. WANG JL, LYU QY, LIU Y, XU LS, QIN W, YAN ZY. Research and development status of fecal microbial deodorant based on in-situ control technology[J]. Chinese Journal of Applied and Environmental, 2022, 28(5): 1357-1366(in Chinese).
    [17] MATUSIAK K, OLEKSY M, BOROWSKI S, NOWAK A, KORCZYŃSKI M, DOBRZAŃSKI Z, GUTAROWSKA B. The use of Yucca schidigera and microbial preparation for poultry manure deodorization and hygienization[J]. Journal of Environmental Management, 2016, 170: 50-59.
    [18] GAO XZ, XU ZC, LI Y, ZHANG LX, LI GX, NGHIEM LD, LUO WH. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste[J]. Science of the Total Environment, 2021, 801: 149640.
    [19] ZHAO Y, LI WG, CHEN L, MENG LQ, ZHENG ZJ. Effect of enriched thermotolerant nitrifying bacteria inoculation on reducing nitrogen loss during sewage sludge composting[J]. Bioresource Technology, 2020, 311: 123461.
    [20] 牛永艳, 穆永松, 毛婷, 郑群, 叶泽, 季彬, 王治业. 除臭微生物的筛选复配及其在堆肥中的应用[J]. 微生物学报, 2023, 63(4): 1531-1540. NIU YY, MU YS, MAO T, ZHENG Q, YE Z, JI B, WANG ZY. Deodorizing microorganisms: screening and application in composting[J]. Acta Microbiologica Sinica, 2023, 63(4): 1531-1540(in Chinese).
    [21] ZHU FX, HONG CL, WANG WP, LYU HH, ZHU WJ, XV H, YAO YL. A microbial agent effectively reduces ammonia volatilization and ensures good maggot yield from pig manure composted via housefly larvae cultivation[J]. Journal of Cleaner Production, 2020, 270: 122373.
    [22] 王慧丽, 江娟. 锯末牛粪堆肥微生物多样性的宏基因组学分析[J]. 江苏农业科学, 2017, 45(7): 28-32.
    [23] CHUN J, OREN A, VENTOSA A, CHRISTENSEN H, ARAHAL DR, Da COSTA MS, ROONEY AP, YI HN, XU XW, de MEYER S, TRUJILLO ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1): 461-466.
    [24] 陈倩倩, 车建美, 刘国红, 刘波, 王阶平, 阮传清, 连亨平. 嗜热复合菌对堆肥品质及微生物群落演替的影响[J]. 植物营养与肥料学报, 2023, 29(4): 745-755. CHEN QQ, CHE JM, LIU GH, LIU B, WANG JP, RUAN CQ, LIAN HP. Effects of thermophilic compound bacteria on composting and microbial community succession[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 745-755(in Chinese).
    [25] CAO LL, LIAO LM, SU CY, MO TH, ZHU FH, QIN RH, LI RT. Metagenomic analysis revealed the microbiota and metabolic function during co-composting of food waste and residual sludge for nitrogen and phosphorus transformation[J]. Science of the Total Environment, 2021, 773: 145561.
    [26] WRIGHT CL, SCHATTEMAN A, CROMBIE AT, COLIN MURRELL J, LEHTOVIRTA-MORLEY LE. Inhibition of ammonia monooxygenase from ammonia-oxidizing Archaea by linear and aromatic alkynes[J]. Applied and Environmental Microbiology, 2020, 86(9): e02388-19.
    [27] WANG SS, NIU QQ, ZHU PF, HUANG YT, LI KC, LI QL. Metagenomics analysis unraveled the influence of sulfate radical-mediated compost nitrogen transformation process[J]. Journal of Environmental Management, 2022, 317: 115436.
    [28] HAN B, ADDO FG, MU XY, ZHANG LS, ZHANG SH, LV XY, LI X, WANG PF, WANG C. Epiphytic bacterial community shift drives the nutrient cycle during Potamogeton malaianus decomposition[J]. Chemosphere, 2019, 236: 124253.
    [29] ZHONG XZ, MA SC, WANG SP, WANG TT, SUN ZY, TANG YQ, DENG Y, KIDA K. A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics[J]. Bioresource Technology, 2018, 247: 443-452.
    [30] CHEN PZ, CHENG WM, LI SP. Optimization strategies for mitigating nitrogen loss in the aerobic composting of pig manure and microbial changes revealed by metagenomic analysis[J]. Process Safety and Environmental Protection, 2023, 169: 270-284.
    [31] 曹丽娜, 王岩, 王跃, 李沛, 郑珂, 刘佳琪, 李红丽. 添加麦秸对鸡粪堆肥过程中氮素减排及细菌群落的影响[J]. 农业环境科学学报, 2023, 42(11): 2560-2569. CAO LN, WANG Y, WANG Y, LI P, ZHENG K, LIU JQ, LI HL. Effects of wheat straw addition on nitrogen emission reduction and bacterial community during chicken manure composting[J]. Journal of Agro-Environment Science, 2023, 42(11): 2560-2569(in Chinese).
    [32] ZHANG WM, YU CX, WANG XJ, HAI L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2020, 297: 122410.
    [33] 尹思倩, 张文明, 常馨怡, 陈开山, 邢彦宏, 杨迎香. 鸡粪和羊粪混合发酵对堆肥优势细菌演替和碳氮损失的影响[J]. 甘肃农业大学学报, 2023, 58(1): 193-201, 213. YIN SQ, ZHANG WM, CHANG XY, CHEN KS, XING YH, YANG YX. Effects of mixed fermentation of chicken manure and sheep manure on the dominant bacteria succession and loss of carbon and nitrogen in compost[J]. Journal of Gansu Agricultural University, 2023, 58(1): 193-201, 213(in Chinese).
    [34] TANG JH, LI X, CUI P, LIN JY, ZENG RJ, LIN H, ZHOU SG. Nitrification plays a key role in N2O emission in electric-field assisted aerobic composting[J]. Bioresource Technology, 2020, 297: 122470.
    [35] ALI N, KHAN S, LI YY, ZHENG NG, YAO HY. Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils[J]. Science of the Total Environment, 2019, 647: 551-560.
    [36] 王瑞飞, 孔盈利, 魏艺璇, 白双, 展莉平, 张昊, 李明军, 杨清香. 菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J]. 江苏农业学报, 2023, 39(4): 966-977. WANG RF, KONG YL, WEI YX, BAI S, ZHAN LP, ZHANG H, LI MJ, YANG QX. Effects of microbial agents on physicochemical properties and microbial community structure of chicken manure-biochar compost[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(4): 966-977(in Chinese).
    [37] 王钰, 郑平, 孙际宾. 谷氨酸棒杆菌的代谢工程使能技术研究进展[J]. 生物工程学报, 2021, 37(5): 1603-1618. WANG Y, ZHENG P, SUN JB. Recent advances in developing enabling technologies for Corynebacterium glutamicum metabolic engineering[J]. Chinese Journal of Biotechnology, 2021, 37(5): 1603-1618(in Chinese).
    [38] XIAO SS, ZHANG HD, ZHU RK, LIAO XD, WU YB, MI JD, WANG Y. Ammonia reduction by the gdhA and glnA genes from bacteria in laying hens[J]. Ecotoxicology and Environmental Safety, 2021, 222: 112486.
    [39] KOHL JB, MELLIS AT, SCHWARZ G. Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism[J]. British Journal of Pharmacology, 2019, 176(4): 554-570.
    [40] van der PLOEG JR, IWANICKA-NOWICKA R, BYKOWSKI T, HRYNIEWICZ MM, LEISINGER T. The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator cbl[J]. Journal of Biological Chemistry, 1999, 274(41): 29358-29365.
    [41] LI CE, YANG JS, WANG X, WANG ET, LI BZ, HE RX, YUAN HL. Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24[J]. Bioresource Technology, 2015, 182: 18-25.
    [42] QING H, DONDE OO, TIAN CC, WANG CB, WU XQ, FENG SS, LIU Y, XIAO BD. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri AD-1[J]. Journal of Bioscience and Bioengineering, 2018, 126(3): 339-345.
    [43] CHEN LF, LIN JQ, PAN D, REN YL, ZHANG J, ZHOU B, CHEN LX, LIN JQ. Ammonium removal by a newly isolated heterotrophic nitrification-aerobic denitrification bacteria Pseudomonas stutzeri SDU10 and its potential in treatment of piggery wastewater[J]. Current Microbiology, 2020, 77(10): 2792-2801.
    [44] LIU YD, WANG HH, ZHANG H, TAO YY, CHEN R, HANG S, DING XY, CHENG MD, DING GC, WEI YQ, XU T, LI J. Synergistic effects of chemical additives and mature compost on reducing H2S emission during kitchen waste composting[J]. Journal of Environmental Sciences, 2024, 139: 84-92.
    [45] SHU CH, CHEN CK. Enhanced removal of dimethyl sulfide from a synthetic waste gas stream using a bioreactor inoculated with Microbacterium sp. NTUT26 and Pseudomonas putida[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(1): 95.
    [46] CHUNG YC, LIN YY, TSENG CP. Removal of high concentration of NH3 and coexistent H2S by biological activated carbon (BAC) biotrickling filter[J]. Bioresource Technology, 2005, 96(16): 1812-1820.
    [47] GENG AL, CHEN XG, GOULD WD, NG YL, YAN R, LEE CC, LIANG DT. Removal of odorous sulphur-containing gases by a new isolate from activated sludge[J]. Water Science and Technology, 2004, 50(4): 291-297.
    [48] SCHULZ AA, COLLETT HJ, REID SJ. Nitrogen and carbon regulation of glutamine synthetase and glutamate synthase in Corynebacterium glutamicum ATCC 13032[J]. FEMS Microbiology Letters, 2001, 205(2): 361-367.
    [49] 吴传栋. 基于碳源调控的污泥堆肥氮素转化及氨同化作用机制研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2018. WU CD. Study on nitrogen transformation and ammonia assimilation during sewage sludge composting based on carbon source control[D]. Harbin: Doctoral Dissertation of Harbin Institute of Technology, 2018(in Chinese).
    [50] 赵晓锋, 于文清, 隋文志. 鸡粪异养除硫化氢菌株的分离、筛选与菌剂配制[J]. 现代化农业, 2012(9): 30-32.
    [51] 刘艳薇, 顾欣, 惠悦然, 念文彩, 纪立东, 石伟勇. 除氨菌复配对鸡粪堆肥除臭和腐熟效果的影响[J]. 河南农业科学, 2019, 48(11): 75-83. LIU YW, GU X, HUI YR, NIAN WC, JI LD, SHI WY. Impact of combined ammonia-removal bacteria on chicken manure compost deodorization and decomposing effect[J]. Journal of Henan Agricultural Sciences, 2019, 48(11): 75-83(in Chinese).
    [52] 唐建, 唐恒军, 司马卫平, 梁超, 邱忠平. 生物除臭菌剂除臭效能及其对微生物影响研究[J]. 四川理工学院学报(自然科学版), 2021, 34(5): 26-32. TANG J, TANG HJ, SIMA WP, LIANG C, QIU ZP. Study on Deodorization efficiency and influence on microorganism of biological deodorizer[J]. Journal of Sichuan University of Science and Engineering (Natural Science Edition), 2021, 34(5): 26-32(in Chinese).
    [53] 张国言, 董元杰, 孙桂阳, 于滨, 徐珂. 复合菌剂对兔粪堆肥碳氮转化与损失的影响[J]. 中国农业大学学报, 2022, 27(11): 153-165. ZHANG GY, DONG YJ, SUN GY, YU B, XU K. Effects of compound bacterial inoculant on the conversion and loss of carbon and nitrogen during rabbit manure composting[J]. Journal of China Agricultural University, 2022, 27(11): 153-165(in Chinese).
    [54] DING S, JIANG LY, HU JY, HUANG WJ, LOU LP. Microbiome data analysis via machine learning models: exploring vital players to optimize kitchen waste composting system[J]. Bioresource Technology, 2023, 388: 129731.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Mingye, ZHAO Yuandong, SUN Jiang, WU Guofang, WANG Lei, WANG Yanwei, HU Guoquan. Bacterial community structure in pig manure composted with a deodorizing strain combination[J]. Microbiology China, 2025, 52(3): 1013-1031

Copy
Share
Article Metrics
  • Abstract:39
  • PDF: 52
  • HTML: 122
  • Cited by: 0
History
  • Received:May 15,2024
  • Adopted:November 04,2024
  • Online: March 19,2025
Article QR Code