Exosomes regulate Brucella infection: mechanism and application value
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Exosomes are the mediators of intercellular communication and play a key role in the spread and immune regulation of Brucella. This article elaborates on the regulatory role of exosomes in Brucella infection and discusses the application value of exosomes in diagnosis, vaccines, and drugs, aiming to provide reference for the application of exosomes in the prevention and control of intracellular bacteria such as Brucella.

    Reference
    [1] 朱良全, 秦玉明, 丁家波. 我国家畜布鲁氏菌病防控面临形势及思考[J]. 中国兽医杂志, 2020, 56(6): 137-140. Zhu LQ, Qin YM, Ding JB. The situation and thinking of prevention and control of livestock brucellosis in China[J]. Chinese Journal of Veterinary Medicine, 2020, 56(6): 137-140(in Chinese).
    [2] 刘志国, 王妙, 崔步云, 李振军. 布鲁氏菌胞内存活及疫苗研究进展[J]. 中国人兽共患病学报, 2019, 35(5): 430-439. LIU ZG, WANG M, CUI BY, LI ZJ. Research progress on Brucella intracellular survival and vaccine[J]. Chinese Journal of Zoonoses, 2019, 35(5): 430-439(in Chinese).
    [3] 李巧玲, 孙佳丽, 彭小薇, 冯宇, 蒋卉, 范学政, 朱良全, 丁家波, 董浩, 秦玉明. 3种胶体金试纸条检测羊布鲁氏菌病效果的比较[J]. 中国兽医杂志, 2021, 57(12): 24-27. LI QL, SUN JL, PENG XW, FENG Y, JIANG H, FAN XZ, ZHU LQ, DING JB, DONG H, QIN YM. Comparison of three colloidal gold test strips for detection of brucellosis in sheep[J]. Chinese Journal of Veterinary Medicine, 2021, 57(12): 24-27(in Chinese).
    [4] 董浩, 李巧玲, 孙佳丽, 冯宇, 蒋卉, 沈青春, 许冠龙, 朱良全, 秦玉明, 梁春南. 4种胶体金试纸条检测牛布鲁氏菌病的比较分析[J]. 中国兽医杂志, 2022, 58(7): 21-24, 32. DONG H, LI QL, SUN JL, FENG Y, JIANG H, SHEN QC, XU GL, ZHU LQ, QIN YM, LIANG CN. Comparative analysis of four colloidal gold strips for diagnosis of bovine brucellosis[J]. Chinese Journal of Veterinary Medicine, 2022, 58(7): 21-24, 32(in Chinese).
    [5] 孙石静, 王芳, 蒋卉, 朱良全, 秦玉明, 许冠龙, 丁家波, 彭小薇, 冯宇, 范学政, 王楠. 一株重组A型口蹄疫病毒VP1基因的粗糙型布鲁氏菌及其疫苗生产方法: CN201910284347.6[P]. 2024-10-29. SUN SJ, WANG F, JIANG H, ZHU LQ, QIN YM, XU GL, DING JB, PENG XW, FENG Y, FAN XZ, WANG N. A recombinant type A foot-and-mouth disease virus VP1 gene of rough Brucella and its vaccine production method: CN201910284347.6[P]. 2024-10-29(in Chinese).
    [6] 丁家波, 范学政, 朱良全, 冯宇, 彭小薇, 秦玉明, 王芳, 许冠龙, 李秋辰, 蒋卉. 一株重组鹦鹉热衣原体外膜蛋白MOMP基因的粗糙型布鲁氏菌及其疫苗生产方法: CN201910284652.5[P]. 2024-10-29. DING JB, FAN XZ, ZHU LQ, FENG Y, PENG XW, QIN YM, WANG F, XU GL, LI QC, JIANG H. A recombinant Brucella with MOMP gene of Chlamydia psittaci outer membrane protein and its vaccine production method: CN201910284652.5[P]. 2024-10-29(in Chinese).
    [7] 李书灵, 李智伟. 外泌体对细菌感染免疫调节机制的研究进展[J]. 中国比较医学杂志, 2024, 34(1): 158-164. LI SL, LI ZW. Research progress into the mechanisms of exosome immunoregulation of bacterial infection[J]. Chinese Journal of Comparative Medicine, 2024, 34(1): 158-164(in Chinese).
    [8] GLITSCHER M, SPANNAUS IM, BEHR F, MURRA RO, WOYTINEK K, BENDER D, HILDT E. The protease domain in HEV pORF1 mediates the replicase’s localization to multivesicular bodies and its exosomal release[J]. Cellular and Molecular Gastroenterology and Hepatology, 2024, 17(4): 589-605.
    [9] BEBELMAN MP, BUN P, HUVENEERS S, van NIEL G, PEGTEL DM, VERWEIJ FJ. Real-time imaging of multivesicular body-plasma membrane fusion to quantify exosome release from single cells[J]. Nature Protocols, 2020, 15(1): 102-121.
    [10] XU F, LUO SM, LU PP, CAI C, LI WH, LI CY. Composition, functions, and applications of exosomal membrane proteins[J]. Frontiers in Immunology, 2024, 15: 1408415.
    [11] 黄宁宁, 齐莉莉, 王进波, 王梦婷, 吴玉琴. 细胞外囊泡的靶细胞摄取机制及其在疾病诊疗中的应用[J]. 生物化学与生物物理进展, 2024, 21(12): 3136-3150. HUANG NN, QI LL, WANG JB, WANG MT, WU YQ. The target cell uptake mechanism of extracellular vesicles and its application in the diagnosis and treatment of diseases[J]. Progress in biochemistry and biophysics, 2024, 21(12): 3136-3150(in Chinese).
    [12] ALIPOOR SD. Editorial: exosomes and exosomal miRNAs as biomarkers in infection with Mycobacterium tuberculosis[J]. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1239739.
    [13] DAI ZL, CAI RR, ZENG H, ZHU HL, DOU YW, SUN SB. Exosome may be the next generation of promising cell-free vaccines[J]. Human Vaccines & Immunotherapeutics, 2024, 20(1): 2345940.
    [14] FILIPOVIĆ L, KOJADINOVIĆ M, POPOVIĆ M. Exosomes and exosome-mimetics as targeted drug carriers: Where we stand and what the future holds?[J]. Journal of Drug Delivery Science and Technology, 2022, 68: 103057.
    [15] SPERA JM, GUAIMAS F, CZIBENER C, UGALDE JE. Brucella egresses from host cells exploiting multivesicular bodies[J]. mBio, 2023, 14(1): e0333822.
    [16] YU H, GU XY, WANG DF, WANG ZL. Brucella infection and toll-like receptors[J]. Frontiers in Cellular and Infection Microbiology, 2024, 14: 1342684.
    [17] ZHANG GD, HU H, YIN Y, TIAN MX, BU ZG, DING C, YU SQ. Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages[J]. Antioxidants, 2024, 13(5): 577.
    [18] 刘诗斯, 张斌, 孙强. 外泌体在细菌感染性疾病中的作用机制研究进展[J]. 中华危重病急救医学, 2023, 35(12): 1327-1330. LIU SS, ZHANG B, SUN Q. Research progress on the mechanism of exosomes in bacterial infectious diseases[J]. Chinese Critical Care Medicine, 2023, 35(12): 1327-1330(in Chinese).
    [19] SPENCER N, YERUVA L. Role of bacterial infections in extracellular vesicles release and impact on immune response[J]. Biomedical Journal, 2021, 44(2): 157-164.
    [20] LIU M, WANG ZG, REN SL, ZHAO HL. Exosomes derived from mycobacterium tuberculosis-infected MSCs induce a pro-inflammatory response of macrophages[J]. Aging, 2021, 13(8): 11595-11609.
    [21] RANGEL-RAMÍREZ VV, GONZÁLEZ-SÁNCHEZ HM, LUCIO-GARCÍA C. Exosomes: from biology to immunotherapy in infectious diseases[J]. Infectious Diseases, 2023, 55(2): 79-107.
    [22] WANG JJ, LI YJ, WANG N, WU JH, YE XJ, JIANG YB, TANG LJ. Functions of exosomal non-coding RNAs to the infection with Mycobacterium tuberculosis[J]. Frontiers in Immunology, 2023, 14: 1127214.
    [23] YI JH, WANG YL, ZHANG H, DENG XY, XI J, LI HH, YANG NN, MA ZC, WANG Y, CHEN CF. Interferon-inducible transmembrane protein 3-containing exosome as a new carrier for the cell-to-cell transmission of anti-Brucella activity[J]. Frontiers in Veterinary Science, 2021, 8: 642968.
    [24] WANG YL, LI HH, XU ZY, YI JH, LI W, MENG C, ZHANG H, DENG XY, MA ZC, WANG Y, CHEN CF. Exosomes released by Brucella-infected macrophages inhibit the intracellular survival of Brucella by promoting the polarization of M1 macrophages[J]. Microbial Biotechnology, 2023, 16(7): 1524-1535.
    [25] 王楠, 吴建红, 李玉洁, 郑志焕, 姚丽洪, 王建军. 外泌体作为诊断结核分枝杆菌感染的标志物研究[J]. 生命科学研究, 2024, 28(1): 33-40. WANG N, WU JH, LI YJ, ZHENG ZH, YAO LH, WANG JJ. Exosomes as potential markers for diagnosis of Mycobacterium tuberculosis infection[J]. Life Science Research, 2024, 28(1): 33-40(in Chinese).
    [26] 刘佳音, 姜海. 我国布鲁氏菌病诊断方法应用及思考[J]. 中华流行病学杂志, 2021, 42(1): 160-163. LIU JY, JIANG H. Application and thinking of diagnostic methods of brucellosis in China[J]. Chinese Journal of Epidemiology, 2021, 42(1): 160-163(in Chinese).
    [27] KRUH-GARCIA NA, WOLFE LM, CHAISSON LH, WORODRIA WO, NAHID P, SCHOREY JS, DAVIS JL, DOBOS KM. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M. tuberculosis infection using MRM-MS[J]. PLoS One, 2014, 9(7): e103811.
    [28] 屈蓉, 吴康, 吴娟, 范小勇, 吕建新. 结核分枝杆菌早期分泌蛋白MPT64的原核表达及其在结核病血清学诊断上的初步应用[J]. 中国生物制品学杂志, 2021, 34(5): 566-570. QU R, WU K, WU J, FAN XY, (LÜUARNIERI A, BRANCAZIO N, FALCONE M, Di NARO M, AZEEM M, ZUBAIR M, NICOLOSI D, Di MARCO R, PETRONIO GP. The role of Mycobacterium tuberculosis exosomal miRNAs in host pathogen cross-talk as diagnostic and therapeutic biomarkers[J]. Frontiers in Microbiology, 2024, 15: 1441781.
    [46] CHINNAPPAN M, SRIVASTAVA A, AMREDDY N, RAZAQ M, PAREEK V, AHMED R, MEHTA M, PETERSON JE, MUNSHI A, RAMESH R. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs[J]. Cancer Letters, 2020, 486: 18-28.
    [47] AL-ANI SA, LEE QY, M杁晈佅SW陁归彁N 獄倬 S杉乎瀠YM丬删兌OH张届汓, 幆鱏汏茠畊療夬氠佈AMZAH栠当爬匠幎畇 JF, TAN LKS. Potential of exosomes as multifunctional nanocarriers for targeted drug delivery[J]. Molecular Biotechnology, 2024. DOI: 10.1007/s12033-024-01268-6.024-10-12(in Chinese).
    [31] LI TW, LI XQ, HAN GP, LIANG M, YANG ZR, ZHANG CY, HUANG SZ, TAI S, YU S. The therapeutic potential and clinical significance of exosomes as carriers of drug delivery system[J]. Pharmaceutics, 2022, 15(1): 21.
    [32] ZHANG MJ, ZANG XL, WANG MY, LI Z, QIAO MX, HU HY, CHEN DW. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges[J]. Journal of Materials Chemistry B, 2019, 7(15): 2421-2433.
    [33] 巨晓洁, 宋婉璐, 周宸宇, 沈秋彤, 廖雨田, 龚珏颖, 褚良银. 纳米药物载体用于治疗胞内菌感染的研究进展[J]. 化工学报, 2024, 75(4): 1153-1166. Ju XJ, Song WL, Zhou CY, Shen QT, Liao YT, Gong JY, Chu LY. Research progress of nano-drug carriers for the treatment of intracellular bacterial infection[J]. CIESC Journal, 2024, 75(4): 1153-1166(in Chinese).
    [34] ALVAREZ-ERVITI L, SEOW Y, YIN HF, BETTS C, LAKHAL S, WOOD MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J]. Nature Biotechnology, 2011, 29(4): 341-345
    [35] YANG XH, SHI GM, GUO J, WANG CH, HE Y. Exosome-encapsulated antibiotic against intracellular infections of methicillin-resistant Staphylococcus aureus[J]. International Journal of Nanomedicine, 2018, 13: 8095-8104.
    [36] 杨晓洪. 负载抗菌药物的外泌体制备及其在抗胞内MRSA感染中的应用[D]. 重庆: 重庆大学博士学位论文, 2019. Yang XH. Preparation of antibiotic-loaded exosomes and its application in anti-intracellular MRSA infection[D]. Chongqing: Doctoral Dissertation of Chongqing University, 2019(in Chinese).
    [37] Yang X, Xie B, Peng H, Shi G, Sreenivas B, Guo J, Wang C, He Y. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes[J]. Journal of Controlled Release, 2021, 329: 454-467.
    [38] BIADGLEGNE F, KÖNIG B, RODLOFF AC, DORHOI A, SACK U. Composition and clinical significance of exosomes in tuberculosis: a systematic literature review[J]. Journal of Clinical Medicine, 2021, 10(1): 145.
    [39] SUN XZ, LI W, ZHAO L, FAN K, QIN FF, SHI LW, GAO F, ZHENG CL. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications[J]. Frontiers in Immunology, 2024, 15: 1401867.
    [40] SHARMA R, RAJPUT VS, JAMAL S, GROVER A, GROVER S. Author Correction: an immunoinformatics approach to design a multi-epitope vaccine against Mycobacterium tuberculosis exploiting secreted exosome proteins[J]. Scientific Reports, 2021, 11: 16844.
    [41] HUI WW, EMERSON LE, CLAPP B, SHEPPE AE, SHARMA J, del CASTILLO J, OU M, MAEGAWA GHB, HOFFMAN C, LARKIN III J, PASCUAL DW, FERRARO MJ. Antigen-encapsulating host extracellular vesicles derived from Salmonella-infected cells stimulate pathogen-specific Th1-type responses in vivo[J]. PLoS Pathogens, 2021, 17(5): e1009465.
    [42] XI XY, WANG BH, ZHANG RM, LING CH. Serum exosome tRFs as a promising biomarker for active tuberculosis and latent tuberculosis infection[J]. Journal of Microbiological Methods, 2024, 222: 106944.
    [43] UBANAKO P, MIRZA S, RUFF P, PENNY C. Exosome-mediated delivery of siRNA molecules in cancer therapy: triumphs and challenges[J]. Frontiers in Molecular Biosciences, 2024, 11: 1447953.
    [44] KANG SR, NGUYEN DH, YOO SW, MIN JJ. Bacteria and bacterial derivatives as delivery carriers for immunotherapy[J]. Advanced Drug Delivery Reviews, 2022, 181: 114085.
    [45] MUKHTAR F, G
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Xiaoge, WANG Qi, TONG Rendong, ZHU Xiaojie, WANG Longxi, WANG Haojie, HU Yunhao, ZHU Liangquan. Exosomes regulate Brucella infection: mechanism and application value[J]. Microbiology China, 2025, 52(2): 552-560

Copy
Share
Article Metrics
  • Abstract:62
  • PDF: 87
  • HTML: 72
  • Cited by: 0
History
  • Received:August 30,2024
  • Adopted:October 15,2024
  • Online: February 22,2025
  • Published: February 20,2025
Article QR Code