研究报告

生防菌解淀粉芽孢杆菌 SQ-2 全基因组测序及生物 信息学分析

李苏冉,李雪,冯佳霖,赵江琦,黄磊*

天津理工大学化学化工学院, 天津 300384

李苏冉, 李雪, 冯佳霖, 赵江琦, 黄磊. 生防菌解淀粉芽孢杆菌 SQ-2 全基因组测序及生物信息学分析[J]. 微生物学通报, 2023, 50(3): 1073-1097.

LI Suran, LI Xue, FENG Jialin, ZHAO Jiangqi, HUANG Lei. Whole genome sequencing and genomics analysis of *Bacillus amyloliquefaciens* SQ-2 with biocontrol activity[J]. Microbiology China, 2023, 50(3): 1073-1097.

摘 要:【背景】解淀粉芽孢杆菌 SQ-2 是从市售豆瓣酱中分离得到的一株益生菌,实验表明菌株 SQ-2 具有较强的抑制植物病原真菌的能力,说明 SQ-2 具有较好的生物防治能力,有作为生物农 药的潜力。【目的】研究菌株 SQ-2 的遗传信息并揭示其抑菌机制。【方法】在 Illumina MiSeq X10 平台上对菌株 SQ-2 进行全基因组测序,使用 Trim Galore V.0.4.0 清理原始数据,并使用 FastQC 检 查质量;使用 SOAPdenovo2 进行从头组装,使用 antiSMASH 鉴定负责次级代谢产物生物合成的 基因。【结果】解淀粉芽孢杆菌 SQ-2 基因组大小为 3 486 537 bp,GC 含量为 46.63%,共编码 4 298 个基因,共发现 11 个与次级代谢产物生物合成相关的基因簇,其中 6 个被确定为抗真菌物 质合成簇,分别编码 bacillaene、bacilysin、butirosin、fengycin、bacillibactin 和 surfactin。基因组 框架测序数据提交至 NCBI 获得 GenBank 登录号为 JAHXSB000000000。超高液相色谱/质谱联用 分析表明产生了儿茶酚型嗜铁素、多烯类和表面活性肽。【结论】获得了解淀粉芽孢杆菌 SQ-2 的 基因组序列,该菌株对植物致病真菌具有强烈的拮抗活性。全基因组序列研究有助于对已知抗菌 肽的利用及寻找新型抗真菌物质。

关键词: 解淀粉芽孢杆菌; 基因组; 基因注释; 次级代谢

资助项目:国家自然科学基金面上项目(42077212)

This work was supported by the National Natural Science Foundation of China (42077212). *Corresponding author. E-mail: huanglei@tjut.edu.cn

Received: 2022-06-20; Accepted: 2022-10-13; Published online: 2022-11-11

Whole genome sequencing and genomics analysis of *Bacillus amyloliquefaciens* SQ-2 with biocontrol activity

LI Suran, LI Xue, FENG Jialin, ZHAO Jiangqi, HUANG Lei^{*}

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China

Abstract: [Background] Bacillus amyloliquefaciens SQ-2 is a probiotic strain isolated from commercially available watercress paste, with previous experiments demonstrating its exceptional bacteriostatic ability against plant pathogenic fungi, indicative of strain SQ-2's rather good bio-control abilities and potential application prospects in bio-pesticides. [Objective] To explore the genetic information of *B. amyloliquefaciens* SO-2, and divulge its antifungal mechanism. [Methods] The whole-genome sequencing of strain SO-2 was performed on an Illumina MiSeqX10 platform. Raw data were cleaned using Trim Galore V.0.4.0 and examined for quality using FastOC. In addition, de novo assembly was performed using the SOAPdenovo2 package. Genes responsible for the biosynthesis of secondary metabolites were identified using antiSMASH. [Results] The genome of *B. amyloliquefaciens* SQ-2 was 3 486 537 bp with the average guanine/cytosine (GC) content of 46.63%, which potentially coded 4298 genes. Eleven gene clusters related to secondary metabolite biosynthesis were discovered, of which six were identified as antifungal synthesis clusters, encoding bacillaene, bacilysin, butirosin, fengycin, bacillibactin, and surfactin, respectively. The sequencing data from this article were submitted to the NCBI and were available in the GenBank database (Login No. liquid Ultra-high performance JAHXSB00000000). chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis indicated that the surfactin, bacillibactin, and bacillaene were produced by strain SQ-2. [Conclusion] This study presents the genome sequence of B. amyloliquefaciens SQ-2, and it exhibits intense antagonistic activity against plant pathogenic fungi. The entirety of this genome sequencing study can assist in utilizing known antifungal peptides and searching for novel antifungal substances to combat pathogens.

Keywords: Bacillus amyloliquefaciens; genome; gene annotation; secondary metabolism

豆瓣酱中常见的细菌主要有酵母菌、乳酸 菌和芽孢杆菌等。解淀粉芽孢杆菌(Bacillus amyloliquefaciens)为芽孢杆菌属,由日本科学家 Juichiro Fukumoto 在 1943 年首次从土壤中分离 得到,该物种因能产生一种液化的 α-淀粉酶的 特性而得名^[1]。1987 年,在对解淀粉芽孢杆菌 的分类学地位进行了长期的争论后,解淀粉芽 孢杆菌被确认为一个独特的物种^[2]。解淀粉 芽孢杆菌在自然界中分布广泛,普遍存在于 植物^[3]、土壤^[4]、深海^[5]等外界环境中。Liu 等 研究发现解淀粉芽孢杆菌和枯草芽孢杆菌可联 合防治大豆疫霉菌^[6]。Duan 等分离并鉴定了一 株解淀粉芽孢杆菌 QSB-6,其能抑制镰刀菌生 长并对植物根部有促生作用^[7]。Xu 等分离出的 解淀粉芽孢杆菌 MQ01 不仅能抑制禾谷镰刀 菌,还具有生物降解玉米赤霉烯酮(zearalenone) 的能力^[8]。

解淀粉芽孢杆菌之所以具有非常强大的生

物防治能力,是因为它能够产生各种类型的酶, 最初也被描述为淀粉酶和其他工业酶的有效生 产者, 包括 α-淀粉酶、蛋白酶、纤维素酶、几 丁质酶和木聚糖酶。例如, 解淀粉芽孢杆菌 KCP2 能产生 α-淀粉酶和蛋白酶^[9]。研究表明, 解 淀粉芽孢杆菌可以产生一些重要的抗菌剂,包括 非核糖体合成肽(surfactin、fengycin、bacillomycin D、bacilysin 和 bacillibactin)及聚酮类物质 (bacillaene, macrolactin 和 difficidin)^[10-11]。其中 非核糖体肽的作用方式包括破坏细胞膜和抑制 肽聚糖前体向杆菌焦磷酸烯醇的转移^[12]。Chen 等对菌株 FZB42^T的全基因组分析显示,产生次 级代谢产物的潜力出人意料[13]。超过 8.5%的基 因组(相当于 340 kb)致力于通过不涉及核糖体 的途径合成抗生素和铁载体^[14]。此外,大多数 代谢产物中的抗菌活性物质还具有热稳定性、 耐酸和耐碱的特性,并对紫外线照射和蛋白酶 相对稳定。除了抗菌特性外、一些代谢产物的 相关生物防治还包括诱导寄主植物产生系统抗 性,促进生物膜的形成和植物根系的定殖。超 高液相色谱-质谱法(UPLC-MS/MS)可以被用来 分析解淀粉芽孢杆菌的发酵产物。姚佳明等发 现解淀粉芽孢杆菌的发酵产物中含有表面活性 素及其同系物,以及一些小分子抑菌肽成分[15]。 这种方法简单高效,可以非常简便地对解淀粉 芽孢杆菌产生的次级代谢物质进行分析,所以 很受研究次级代谢产物合成基因簇和抑菌活性

近年来,利用基因组测序技术研究和预测 微生物代谢产物的种类、结构和合成途径已经 成为生防菌抗生素发掘的一种新方法^[16]。一般 情况下,解淀粉芽孢杆菌的次级代谢物产量很 低,限制了它们的实际应用。然而全基因组分 析有助于人们对这种具有多种次级代谢物生产 能力的芽孢杆菌进行更深层次的研究,以促进

成分的学者们青睐。

其在农业和工业上的应用。2007年,解淀粉芽 孢杆菌 FZB42 的全基因组测序被公布,这是最 早完成全基因组测序的菌株,其基因组大小为 3.9 Mb,GC 含量为 46.6%,含有 89 个 tRNA 基因序列、10 个 rRNA 操纵子,预测编码 3 693 个基因,其中 310 个是特有基因^[17-19]。目 前已经完成全基因组测序的解淀粉芽孢杆菌 野生型菌株达 57 株,其中菌株 FZB42、DMS7 和 UC-MB5036 是进行功能基因组学研究的模 式菌株^[20]。

为了深入研究菌株 SQ-2 生防功能的内在 原因,本研究采用全基因组测序技术,在获得 菌株 SQ-2 全基因组序列的基础上,借助 gene ontology (GO)、Kyoto encyclopedia of genes and genomes (KEGG)、clusters of orthologous groups (COG)、non-redundant protein sequence database (NR)和 swiss-prot protein sequence database (Swiss-Prot)等数据库注释菌株 SQ-2 基因功能; 为探索菌株 SQ-2 的抑菌机理,采用 antiSMASH 在线工具对 SQ-2 的抑菌基因簇进行分析以期 为解淀粉芽孢杆菌 SQ-2 后续成为生物防治工 程菌株奠定基础。

1 材料与方法

1.1 材料

1.1.1 主要试剂和仪器

细菌基因组 DNA 提取试剂盒,布鲁克(北 京)科技有限公司;DL2000 DNA marker,天根 生化科技(北京)有限公司。PCR 仪,Applied Biosystems 公司;电泳仪,北京六一生物科技有 限公司;NanoDrop 2000,赛默飞世尔科技公司。

1.1.2 培养基

种子培养基: LB 培养基^[21]。

真菌固体培养基: potato dextrose agar (PDA) 培养基^[22]。

各培养基均使用 1×10⁵ Pa 灭菌 30 min 后 备用。

1.1.3 菌株的分离鉴定

解淀粉芽孢杆菌 SQ-2 由市售豆瓣酱中分 离筛选得到,具体分离方法:称取豆瓣酱样本 10g,倒入装有90mL无菌水的锥形瓶中,于 200r/min振荡20min,制成1:10的稀释液;用 移液枪吸取1mL,加入9mL无菌水充分振荡, 制成1:10²的稀释液;依此类推,分别制成1:10³、 1:10⁴、1:10⁵、1:10⁶的稀释液;每个浓度的稀释 液摇匀后用移液枪移取250μL至LB平板上, 在25°C恒温箱中培养3d;挑取形态、颜色等 特征不同的菌落画线于提前制作好的LB固体 培养基,待细菌完全生长,即完成菌株分离。

串珠镰刀菌(Fusarium moniliforme) ACCC 36127、塔宾曲霉菌(Aspergillus tubingensis) ACCC 32407、茄匐柄霉菌(Stemphylium solani) ACCC 36456、禾谷镰孢菌(Fusarium graminearum) ACCC 38067 由天津理工大学应明老师惠赠。

1.2 方法

1.2.1 植物病原真菌拮抗试验

采用平板对峙法,在 PDA 平板中间分别放 置串珠镰刀菌(Fusarium moniliforme) ACCC 36127、塔宾曲霉菌(Aspergillus tubingensis) ACCC 32407、茄匐柄霉菌(Stemphylium solani) ACCC 36456、禾谷镰孢菌(Fusarium graminearum) ACCC 38067 的菌块,对照组为只在 PDA 平板 中心接种直径为 6 mm 病原菌菌块,处理组为在 对照组的基础上,在距离培养皿中心为 2.0 cm 处 划线接种菌株 SQ-2。25 °C 培养 3 d 后观察、测 量并拍照。

1.2.2 基因组 DNA 提取与测序

菌株 SQ-2 接种于 LB 培养基中,在 25 ℃、 200 r/min 条件下培养 24 h,将培养液 10 000×g 离心 5 min 收集菌体,微生物 DNA 的提取按照 细菌 DNA 提取试剂盒所示方法提取。以上述 步骤提取的 DNA 为模板,以细菌鉴定通用引物 27F (5'-AGAGTTTGATCATGGCTCAG-3')和 1492R (5'-TACGGTTACCTTGTTACGACTT-3') 扩增 16S rRNA 基因序列。PCR 反应体系: $2 \times Taq$ PCR Master Mix 12.5 µL,上、下游引物 (10 µmol/L)各 1µL, DNA 模板 0.5 µL, ddH₂O 10 µL。PCR 反应条件: 95 °C 5 min; 94 °C 1 min, 58 °C 1 min, 72 °C 90 s, 30 个循环; 72 °C 10 min。取 5 µL PCR 产物进行 1%琼脂糖凝胶 电泳,回收 PCR 产物送至上海美吉生物医药科 技有限公司测序,所得序列在 NCBI 的 BLAST (https://blast.ncbi.nlm.nih.gov)和 LPSN 基因库 (https://lpsn.dsmz.de/)中进行核苷酸序列比对, 获得其相似性较高的序列,通过 MEGA 5.0 软 件邻接法构建系统发育树。

1.2.3 基因组组装与生物信息学分析

参照Li等的方法对菌株SQ-2进行基因组组 装及生物信息学分析[23],具体方法:细菌基因 组扫描图是利用短序列组装软件 SOAPdenovo2 (http://soap.genomics.org.cn/)对二代测序后的 优化序列进行多个 Kmer 参数的拼接,得到最 优的 contigs 组装结果。随后将 reads 与 contigs 进行比对,根据 reads 的 paired-end 和 overlap 关系,对组装结果进行局部组装和优化,形 成 scaffolds。利用 Glimmer (http://ccb.jhu.edu/ software/glimmer/index.shtml) GeneMarkS Prodigal 软件对基因组中的编码序列(coding sequence)进行预测。使用 GeneMarkS 预测质粒基 因组。利用 tRNAscan-SE V2.0 软件(http://trna. ucsc.edu/software/)对基因组中包含的 tRNA 进 行预测,可以获得每个样本基因组中 tRNA 的核苷酸序列信息、反密码子信息及二级结 构信息。利用 Barrnap 软件(https://github.com/ tseemann/barrnap)对基因组中包含的rRNA进行 预测,获得每个样本基因组中所有 rRNA 的种 类、位置和序列信息。

1.2.4 拮抗物质分析

利用 antiSMASH V3.0 对菌株 SQ-2 的次级 代谢产物合成基因簇进行预测^[24]。结合基因注 释结果和 NCBI 数据库 BLAST 比对分析结果, 分析菌株 SQ-2 次级代谢产物中的抑菌物质及 编码基因簇。

1.2.5 发酵液 UPLC-MS/MS 分析

在研究基因组序列并预测次级代谢产物合成基因簇后,为进一步验证菌株生产的代谢产物中是否含有相关真菌拮抗物质,利用超高液相色谱-质谱联用法对SQ-2的发酵液进行分析,并与已报道的抑菌物质成分作比较,以此来推测菌株 SQ-2 发酵液中起抑菌作用的成分。采用蔡国磊等的方法进行样品制备及样品分析^[25]。

1.2.6 构建缺失突变株 SQ-2∆srfAA

1) 相应基因敲除载体的构建

为了获得表面蛋白素缺陷突变株 $\Delta srfAA$, 需要将 *srfAA* 基因敲除。以解淀粉芽孢杆菌 SQ-2 基因组 DNA 为模板(浓度为 100 mg/L), 使用引物 *srfAA*-1 和 *srfAA*-2 (表 1)扩增来自 *srfAA*上游区域的 1 000 bp PCR 产物。PCR 反 应体系(25 μ L): 2×PrimerSTAR Max Premix 12.5 μ L, DNA 模板 1 μ L, 上、下游引物(10 μ mol/L) 0.3 μ L, ddH₂O 10.9 μ L。PCR 反应条件: 95 °C 3 min; 95 °C 30 s, 55 °C 30 s, 72 °C 3 min, 30 个循环; 72 °C 10 min。使用引物 *srfAA*-3 和

表1 实验所用引物

Primer name	Sequence of primer $(5' \rightarrow 3')$	Size (bp)
srfAA-1	CGCGAATTCACATACGCTGATTGAACTGC (EcoR I)	29
srfAA-2	CGCGTCGACATTACGATGCTGGAGAACG (Sal I)	28
srfAA-3	CGCGTCGACAACTCTTGAATCGCCTGC (Sal I)	27
srfAA-4	CGCGGATCCTTGGAGGATACTGTGAGGAGA (BamH I)	31
P1	CGCACGCGTTAGTCACTGTTTGCCACATTCG (mlu I)	31
P2	CGCGAATTCTGGTTCAGCAGTAAATGGTGG (EcoR I)	30
Р3	ATGGTCCAGCTCTTTAAATCGTTCGATACGACAG	34
P4	TTATAACAATTGGCCTGCAGTGCTCCTGTTAATA	34

Table	1	Primers	used	in	this	study

srfAA-4 扩增来自 srfAA 下游区域的 1000 bp PCR 产物, PCR 反应体系和反应条件同上。利 用 overlap PCR 连接上、下游同源臂。以质粒 PUS19 序列为 PCR 模板(浓度为 1 mg/L),设计 壮观霉素抗性基因的引物 P1、P2,并扩增壮观 霉素抗性基因 *spc*。PCR 反应体系(25 µL): 2×PrimerSTAR Max Premix 12.5 µL, 模板(质粒 PUS19)1 µL, 上、下游引物(10 µmol/L) 0.3 µL, ddH₂O 10.9 µL。PCR 反应条件: 95 °C 3 min; 95°C 30 s, 60°C 30 s, 72°C 3 min, 30 个循环; 72 °C 10 min。将 PCR 扩增所得到的产物经限 制性内切酶(表 1)酶切后用琼脂糖凝胶电泳回 收, 连入 pMAD 质粒的相关限制性酶切位点, 将其转入大肠杆菌(E. coli) DH5α感受态细胞, 经筛选最终获得 pMAD- Δ srfAA。经过测序分析, 验证所构建突变体序列的正确性。

2) 突变子的筛选

通过电转化方法将重组质粒导入菌株 SQ-2的感受态中。进行 srfAA 基因的同源重组, 通过单、双交换以获得突变株(图 1)。使用引物 srfAA-1 和 srfAA-4 通过 PCR 扩增和测序确认 srfAA 缺失突变体。pMAD 是温度敏感型穿梭质 粒,可同时在大肠杆菌和芽孢杆菌中复制,该 质粒中含有用来编码 β-半乳糖苷酶的 LacZ 基 因,它可以分解 5-溴-4-氯-3-吲哚-β-D-半乳糖苷 (X-gal)产生蓝色菌落。此外,质粒中存在温度

图 1 同源重组过程示意

Figure 1 Illustration of the homologous recombination process.

敏感复制子,当温度低于 30 °C 时,该质粒可 以稳定存在于革兰氏阳性菌的细胞中,质粒上 所携带的基因可以通过菌株染色体上的同源序 列进行交换甚至双交换;而当温度升高至 40 °C 及以上时该质粒就容易丢失,因此,阳性突变子 的筛选先经过 30 °C 的基因交换,再经过 40 °C 的质粒丢失。将基因敲除突变体 pMAD-Δ*srfAA* 转入大肠杆菌 DH5α 感受态细胞后,将其涂布 于含有 100 μg/mL X-gal 的 LB 平板, 30 °C 培 养 24 h,此时 pMAD-Δ*srfAA* 或是游离在细胞 中或是发生了单交换,感受态细胞可以表达 LacZ 基因,因此平板上长出的蓝色菌落就是转 化成功的转化子。将选出的蓝色菌落转接入解 淀粉芽孢杆菌 SQ-2 的液体培养基中,42 °C、 200 r/min 摇床振荡培养 24 h;将培养菌液转接 至新鲜的含 50 μg/mL 壮观霉素的 LB 液体培养 基中,42 °C、200 r/min 摇床振荡培养 12 h; 将温度降至 30 °C 继续摇床振荡培养 12 h; 将温度降至 30 °C 继续摇床振荡培养 12 h。将 培养菌液转接至含有 100 μg/mL X-gal 和 50 μg/mL 壮观霉素的 LB 平板上,30 °C 培养 24 h,选取白色菌落分别接种于含 3 μg/mL 红 霉素的 LB 平板上,挑选红霉素敏感菌株,即 为构建的 srfAA 基因缺失突变的突变菌株,为 SQ-2ΔsrfAA 菌株。

2 结果与分析

2.1 菌株 SQ-2 的形态观察

菌株 SQ-2 在 LB 固体培养基上呈淡黄色不透明菌落,表面粗糙,有突起(图 2A);在扫描电镜(scanning electron microscope)下观察到菌株SQ-2 的形态为杆状,上下两端呈圆弧状(图 2B)。

图 2 菌株 SQ-2 形态图 A: SQ-2 菌落形态. B: SQ-2 细菌菌体形态 Figure 2 Morphology of strain SQ-2. A: The colony morphology of SQ-2. B: The bacterial morphology of SQ-2.

2.2 菌株 SQ-2 的抑菌活性结果

拮抗试验发现菌株 SQ-2 对 4 种真菌均具 有良好的抑制效果,如图 3 所示,图 3A-3D 为 4 种真菌的对照组,图 3E-3H 为实验组,对 峙平板抑菌圈直径分别为 41.30、47.06、47.51 和 65.60 mm。

2.3 菌株 SQ-2 的全基因组概况

采用二代测序平台 Illumina HiSeq X10 对 细菌 SQ-2 的全基因组进行测序。据预测,全 基因组共有 4 298 个蛋白质编码基因,平均长 度 811 bp,占总基因组的 87.04%,还有 47 个 tRNA 及 117 个串联重复(tandem repeat, TR)序 列。全基因组平均 GC 含量为 45.61%。将菌株 SQ-2 基因组测序数据提交至 GenBank,登录号 为 JAHXSB00000000,菌株 SQ-2 基因组图谱 如图 4 所示。

2.4 基因组的功能注释

Diamond 是一种高通量比对程序,可将 DNA 测序 reads 文件与蛋白质参考序列文件进 行比较。菌株 SQ-2 基因组共有 4 298 个基因在 GO、KEGG 等数据库成功得到比对注释。得 到功能注释基因最多的数据库为 NR 数据库, 有 4 298 个基因得到注释,占基因总数的 100%; 其次是 Swiss-Prot 数据库,有 3 653 个基因得到 注释,占基因总数的 84.99%;接下来是 KEGG、 COG、GO 和 Pfam 数据库,分别有 2 189、3 075、 3 018 和 3 371 个得到功能注释的基因,占基因 总数的 50.93%、71.54%、70.22%和 78.43%; 而在 CAZy 数据库中得到注释的基因最少,仅 有 135 个,占基因总数的 3.14%。

2.4.1 GO 注释结果

将菌株 SQ-2 氨基酸序列与 GO 数据库进行 比对和统计分析,得到菌株功能基因的分布情况。解淀粉芽孢杆菌 SQ-2 在 GO 数据库中共有 3 018 个基因被注释到。GO 注释表明,基因数 最多的是分子功能(molecular function),基因数 为 2 376;其次是生物过程(biological process), 基因数为 2 184;最少的是细胞组分(cellular component),基因数为 1 472 (图 5)。在分子功 能中最主要的途径有 5 个,分别是 ATP 结合

图 3 菌株 SQ-2 对病原菌的拮抗作用 A-D: 茄匐柄霉菌、串珠镰刀菌、禾谷镰孢菌和塔宾曲霉菌. E-H: 菌株 SQ-2 对茄匐柄霉菌、串珠镰刀菌、禾谷镰孢菌和塔宾曲霉菌的拮抗

Figure 3 The antagonism of strain SQ-2 against pathogens. A–D: *Stemphylium solani* (ACCC 36456), *Fusarium moniliforme* (ACCC 36127), *Fusarium graminearum* (ACCC 38067), and *Aspergillus tubingensis* (ACCC 32407). E–H: The antagonism of strain SQ-2 against *Stemphylium solani* (ACCC 36456), *Fusarium moniliforme* (ACCC 36127), *Fusarium graminearum* (ACCC 38067), and *Aspergillus tubingensis* (ACCC 32407).

Figure 4 Genomic map of *Bacillus amyloliquefaciens* SQ-2.

Bacillus amyloliquefaciens SQ-2 基因组图

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

图 4

图 5 Bacillus amyloliquefaciens SQ-2 的 GO 分析

Figure 5 Gene distribution based on GO classification of *Bacillus amyloliquefaciens* SQ-2.

(ATP binding, GO0005524),有 344 个基因;DNA 结合(DNA binding, GO0003677),有 286 个基因;转录因子活性(transcription factor activity, GO0003700),有 127 个基因;金属离子结合(metal ion binding, GO0046872),有 123 个基因;水解 酶活性(hydrolase activity, GO0016787),有 117 个 基因。生物过程中最主要的途径是氧化还原过程(oxidation-reduction process, GO0055114),有 337 个基因;转录调控(regulation of transcription,

GO0006355),有 218 个基因。细胞组分最主要的途径是膜的组成部分(integral component of membrane, GO0016021),有 887 个基因;细胞质(cytoplasm, GO0005737),有 303 个基因。

2.4.2 COG 注释结果

菌株 SQ-2 基因组中共有 3 075 个蛋白质编 码基因在 COG 数据库中被注释到。菌株 SQ-2 的基因功能注释结果共分为 20 类(图 6),分别 有 1、170、35、295、82、215、103、96、142、

- L: Replication, recombination and repair X: Mobilon
- M: Cell wall/Membrane/Envelope biogenesis
- X: Mobilome: prophages, transposons

图 6 菌株 SQ-2 基因组 COG 数据库比对分析结果 Figure 6 COG functional classification of the strain SQ-2.

234、155、184、41、101、179、61、815、127、
34、50 个基因注释分类到 B-V,其中共有
295 个(9.59%)氨基酸转运与代谢(amino acid transport and metabolism)基因的注释结果,

234 个(7.61%)转录(transcription)基因的注释结 果; 215 个(6.99%)碳水化合物转运与代谢 (carbohydrate transport and metabolism)基因的 注释结果, 184 个(5.98%)细胞壁/膜/包膜生物起 源(cell wall/membrane/envelope biogenesis)基因 的注释结果, 179 个(5.82%)无机离子转运与代 谢(inorganic ion transport and metabolism)基因 的注释结果, 以及 170 个(5.53%)能量产生与转 化(energy production and conversion)基因的注 释结果。但还有 26.50%的基因功能未知, 需要 进一步研究。

2.4.3 KEGG 注释结果

将菌株 SQ-2 与 KEGG 数据库进行比对分 析, KEGG 途径的 6 个分类中,基因数量最 多的是与代谢相关的,其次是环境信息处理 (图 7)。对应到 KEGG Pathway 的 2 189 个基因 富集在 206 条代谢通路中,占菌株基因总数 的 50.93%;基因数≥20 的代谢通路有 43 个 (表 2)。KEGG 富集分析显示,氨基酸生物合成、 ABC 转运蛋白、双组分调节系统是最主要的 3 种代谢通路,分别有 120、114 和 122 个基因 注释结果;此外,群体效应(quorum sensing)、 碳 代 谢 (carbon metabolism)、 嘧 啶 代 谢 (pyrimidine metabolism)和 嘌 呤 代 谢 (purine metabolism)与菌株基因组相比具有较高的 相关度。

2.4.4 CAZy 功能分析

在与 CAZy 数据库进行对比后,发现菌株 SQ-2 中有 135 个基因所编码的蛋白得到注释。 糖苷水解酶(glycoside hydrolases, GHs)家族的 蛋白被分为 23 类(由 44 个基因编码)、糖苷转 移酶家族的蛋白(glycosyl transferases, GTs)被 分为 11 类(由 43 个基因编码)、碳水化合物酯酶 (carbohydrat esterases, CEs)被分为 9 类(由 31 个基 因编码)、碳水化合物结合组件(carbohydratebinding modules, CBMs)被分为 2 类(由 2 个基因 编码)、多糖裂解酶(polysaccharide lyases)被分 为 2 类(由 4 个基因编码)、氧化还原酶(auxiliary activities, AAs)被分为 7 类(由 11 个基因编码)。 这些蛋白质结构域属于 CAZy 家族。

2.4.5 NR、Pfam 和 Swiss-Prot 数据库的注释

非冗余数据库(non-redundant protein sequence database)相当于一个以核酸序列为基础的交叉 索引,将核酸数据和蛋白数据联系起来^[26]。菌株 SQ-2 基因组中有 4 298 个基因在 NR 数据库 得到注释。

蛋白质家族的数据库(Pfam)根据多序列比 对和隐马尔可夫模型(HMMs)将蛋白分为不同 的家族^[27]。菌株 SQ-2 中有 3 371 个基因在 Pfam 数据库中得到了注释。

Swiss-Prot 是一个精选的蛋白质序列数据 库,包括蛋白质功能、结构、翻译后修饰、变 异等描述^[28],菌株 SQ-2 中有 3 653 个基因的 蛋白序列功能在 Swiss-Prot 数据库中得到了 注释。

2.4.6 毒力因子分析

将菌株 SQ-2 的基因组与毒力因子数据库 (virulence factors database, VFDB)进行比对分 析,发现359个毒力因子基因得到注释(图8, 表 3)。其中, 与铁摄取系统(iron uptake system) 相关的基因最多,有52个基因得到注释,例如 脂肪酸结合蛋白基因 fbpABC;其次是与抗吞噬 能力(antiphagocytosis)相关的基因,有 39 个基 因得到注释,其中大多数与荚膜多糖合成酶有 关; 接下来依次是黏附(adherence)、发作 (invasion)、分泌系统(secretion system)、胁迫蛋 白(stress protein)和调节(regulation)基因,分别 有 37、22、12、11 个基因得到注释。与毒素(toxin) 相关的基因仅有一个,为腺苷酸环化酶基因 cya,该基因编码的蛋白参与 ATP 合成及氨基酸 代谢。综上所述,这 359 个得到注释的基因并 非真正的毒力基因, 而是在调节生物过程中发 挥重要作用的调节基因,这表明当菌株 SQ-2 被用作生物防治时是安全无害的。

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

Figure 7 Gene distribution based on KEGG classification of *Bacillus amyloliquefaciens* SQ-2.

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

Map No.	Map name	Number of gene (≥20)
map02030	Bacterial chemotaxis	22
map02040	Flagellar assembly	33
map02024	Quorum sensing	77
map01210	2-oxocarboxylic acid metabolism	28
map01200	Carbon metabolism	96
map01212	Fatty acid metabolism	29
map01230	Biosynthesis of amino acids	120
map00061	Fatty acid biosynthesis	25
map00052	Galactose metabolism	21
map00500	Starch and sucrose metabolism	36
map00640	Propanoate metabolism	30
map00051	Fructose and mannose metabolism	20
map00630	Glyoxylate and dicarboxylate metabolism	31
map00020	Citrate cycle (TCA cycle)	23
map00520	Amino sugar and nucleotide sugar metabolism	40
map00620	Pyruvate metabolism	40
map00650	Butanoate metabolism	24
map00010	Glycolysis/Gluconeogenesis	40
map00030	Pentose phosphate pathway	23
map00730	Thiamine metabolism	20
map00860	Porphyrin and chlorophyll metabolism	21
map00790	Folate biosynthesis	23
map00770	Pantothenate and CoA biosynthesis	20
mapko00330	Arginine and proline metabolism	23
map00250	Alanine, aspartate and glutamate metabolism	33
map00260	Glycine, serine and threonine metabolism	33
map00280	Valine, leucine and isoleucine degradation	23
map00270	Cysteine and methionine metabolism	42
map00220	Arginine biosynthesis	21
map00400	Phenylalanine, tyrosine and tryptophan biosynthesis	24
map00190	Oxidative phosphorylation	34
map00680	Methane metabolism	26
map00720	Carbon fixation pathways in prokaryotes	28
map00230	Purine metabolism	68
map00240	Pyrimidine metabolism	54
map00550	Peptidoglycan biosynthesis	29
map03010	Ribosome	40
map00970	Aminoacyl-tRNA biosynthesis	26
map03430	Mismatch repair	24
map03440	Homologous recombination	21
map02020	Two-component system	114
map02060	Phosphotransferase system (PTS)	23
map02010	ABC transporters	122

表 2 菌株 SQ-2 基因组 KEGG 数据库主要代谢通路分析

Table 2 Main metabolic pathways of the strain SQ-2 from KEGG database

图 8 *Bacillus amyloliquefaciens* SQ-2 的毒力因子统计 A: 攻击性毒力因子. B: 非特异性毒力因子. C: 防御性毒力因子. D: 相关毒力基因的调控. 饼图/环图右边的文字是毒力因子的二级分类, 圆环面积表示该分类中基因所占的相对比例

Figure 8 Virulence factors statisticof *Bacillus amyloliquefaciens* SQ-2. A: Offensive virulence factors. B: Nonspecific virulence factor. C: Defensive virulence factors. D: Regulation of virulence-associated genes. The text to the right of the pie/ring chart is the second-level classification of virulence factors, the area of the ring represents the relative proportion of genes in this classification.

表 3	菌株 SQ-2	毒力因子	·等级分类
-----	---------	------	-------

Table 3 Classification of virulence factor grades of Bacillus amyloliquefaciens SQ-2

Sample name	First-level classification	Second-level classification	Number of gene
SQ2	Offensive virulence factors	Toxin	1
SQ2	Nonspecific virulence factor	Iron uptake system	52
SQ2	Defensive virulence factors	Antiphagocytosis	39
SQ2	Regulation of virulence-associated genes	Regulation	11
SQ2	Offensive virulence factors	Secretion system	12
SQ2	Nonspecific virulence factor	Exoenzyme	1
SQ2	Offensive virulence factors	Adherence	37
SQ2	Offensive virulence factors	Invasion	22
SQ2	Defensive virulence factors	Stress protein	11

2.5 次级代谢产物合成相关基因簇分析

利用 antiSMASH V3.0 对菌株 SQ-2 基因组 的次级代谢产物合成基因簇进行了预测及分 析,菌株 SQ-2 具有 11 个次级代谢产物基因簇 (表 4),并从中发现 6 类具有抗菌活性的物质: 多烯类(bacillaene)、丰原素(fengycin)、儿茶酚 型嗜铁素(bacillibactin)、表面活性肽(surfactin)、 杆菌溶素(bacilysin)和丁酰苷菌素(butirosin)。其 中, Cluster1 与 BGC0001089 来源的 *Bacillus velezensis* FZB42 的 bacillaene 合成基因簇相似 性为 100%; Cluster2 与 BGC0001184 来源的 *Bacillus velezensis* FZB42 的杆菌溶素(bacilysin)

Cluster ID	Nucleotide length (bp)	Number of gene	Cluster type	Similarity (%)	Similar cluster
Cluster1	102 691	53	Transatpks-NRPS	100	Bacillaene
Cluster2	41 419	43	Other	100	Bacilysin
Cluster3	20 742	28	Terpene	_	_
Cluster4	41 243	51	Otherks	7	Butirosin
Cluster5	21 884	24	Terpene	-	-
Cluster6	41 099	58	T3PKS	-	-
Cluster7	110 406	77	Transatpks-NRPS	93	Fengycin
Cluster8	65 830	68	Bacteriocin-NRPS	100	Bacillibactin
Cluster9	22 632	17	Lantipeptide	-	-
Cluster10	25 374	25	NRPS	39	Surfactin
Cluster11	34 244	31	NRPS	_	_

表 4	菌株 S	5Q-2	次级代谢产	物合成基因簇

 Table 4
 Gene clusters of secondary metabolite of Bacillus amyloliquefaciens SQ-2

-: 无

-: None.

合成基因簇相似性为 100%; Cluster4 与 BGC0000693 来源的 Bacillus circulans 的丁酰苷 菌素(butirosin)基因簇相似性为 7%; Cluster7 与 BGC0001095 来源的 Bacillus velezensisFZB42 的 Fengycin 合成基因簇相似性为 93%; Cluster8 与 BGC0000309 来源的 Bacillus subtilis subsp. subtilis str. 168 的 bacillibactin 合成基因簇相似 性为 100%; Cluster10 与 BGC0000433 来源的 Bacillus velezensis FZB42 的 surfactin 合成基因 簇相似性为 39%。比对发现菌株 SQ-2 基因组中 还存在5种功能未知的基因簇(Cluster3、5、6、 9、11), 其中 NRPS 1 种、T3PKS (type III PKS) 类1种、lantipeptide1种、萜类(terpene)2种。 这表明菌株 SQ-2 中可能存在合成新抑菌物质 的基因簇,具有较大的研究价值和农业应用潜 力。在此前的研究中, Kim 等观察到菌株产生 的抗真菌蛋白的作用模式是破坏细胞壁^[29]。除 此之外, 解淀粉芽孢杆菌的抗真菌蛋白可以诱 导真菌的膜通透性。一些抗菌肽在高浓度下通 过物理方式快速破坏微生物细胞膜而起作用, 导致细胞泄漏和死亡^[30]。我们推测解淀粉芽孢 杆菌 SQ-2 抑菌原理之一可能是降解植物病原 真菌的细胞壁或改变真菌的膜通透性。

选择芽孢杆菌近缘种 Bacillus velezensis FZB42、Bacillussubtilis subsp. subtilis str. 168 和 Bacillus circulans 为参比菌株,对基因组中已知 功能的基因簇进行统计,结果如表 5 所示,近缘 菌种基因组中均有 SQ-2 次级代谢产物基因簇。

表 5 次级代谢产物基因簇对比表

Table 5The comparison of secondary metabolitegene clusters

Compound	Enzyme	SQ-2	FZB42	B. subtilis 168
Surfactin	NRPS	1	1	1
Bacillomycin D	NRPS/PKS	-	1	-
Fengycin	NRPS	1	1	1
Putativepeptide	NRPS	_	1	-
Bacillibactin	NRPS	1	1	1
Bacilysin/	NRPS	1	1	1
Anticapsin				
Macrolactin	PKS	-	1	-
Bacillaene	NRPS/PKS	1	1	1
Difficidin	PKS	_	1	-
Amylocyclicin	RPS	_	1	-
Mersacidin	RPS	-	1	-
Butirosin	Otherks	1	-	_
T				

-: 尢

菌株 SO-2 中表面活性肽(surfactin)基 2.6 因簇同源性比对

根据 antiSMASH 预测结果, 菌株 SQ-2 中存 在表面活性肽(surfactin)基因簇, UPLC-MS/MS 也证明菌株 SQ-2 产生的次级代谢产物与菌株 Bacillus velezensis FZB42 所产次级代谢产物 surfactin 具有同样的相对分子质量。菌株 SQ-2 存在的表面活性肽(surfactin)基因簇与贝莱斯 芽孢杆菌中表面活性肽(surfactin)基因簇的相 似性有 39%。将 2 个菌株的表面活性肽基因 簇中各个基因片段比对后发现,除 xy02、 *srfAA、srfAB、comS、ycxC*和 *ycxD*这6个基 因外,其他17个基因片段的相似程度均≥68%, 2 个菌株中表面活性肽(surfactin)基因簇具有

高度的相似性(表 6), 推测菌株 SQ-2 具有产 生表面活性肽(surfactin)的能力。由于脂肪酸 链的长度以及氨基酸的种类和位置的改变,使 得 surfactin 具有许多同系物或异构体。本文 中解淀粉芽孢杆菌 SQ-2 的部分基因片段与已 报道贝莱斯芽孢杆菌 FZB42 的相应基因片段 虽有所差异, 推测原因为已报道的 surfactin 同分异构体,具体原因需进一步后续分离纯化 后分析。

2.7 解淀粉芽孢杆菌 SO-2 野生型发酵液 混合体系 UPLC-MS/MS 分析

结合相应的分子量以及查文献可知,其中 质谱图(图 9)中对应的出峰时间 8-10 min 的 m/z 为 579.34、581.36、582.36 的[M+H]⁺峰是

表 6 菌株 SO-2 与贝莱斯芽孢杆菌 FZB42 表面活性肽基因簇比对

Table 6	The comparison	about the su	rfactin gene o	cluster of strain	SQ-2 and	Bacillus vel	lezensis FZB42
			<u> </u>		~		

Gene	Protein accession	FZB42 ORF	SQ-2 ORF	aa similarity	Predicted function
	No. (NCBI)	(aa)	(aa)	(%)	
yciC	CAE02619.1	425	392	92.2	GTP-binding protein
yx01	CAE02620.1	443	302	68.2	Glutathione-dependent formaldehyde dehydrogenase
yckC	CAE02621.1	144	143	99.3	RDD family protein
yckD	CAE02622.1	107	105	98.1	yckD family protein
yckE	CAE02623.1	478	471	98.5	Family 1 glycosylhydrolase
nin	CAE02624.1	132	128	97.0	Peptidase S24
пис	CAE02625.1	148	145	98.0	Sporulation-specific extracellular nuclease NucA
hxlB	CAE02626.1	185	183	98.9	6-phospho-3-hexuloisomerase
hxlA	CAE02627.1	211	206	97.6	3-hexulose-6-phosphate synthase
hxlR	CAE02628.1	120	120	100.0	Helix-turn-helix transcriptional regulato
xy02	CAE02629.1	122	29	23.8	Hypothetical protein
srfAA	CAE02630.1	3 584	426	11.9	Surfactin non-ribosomal peptide synthetase SrfAA
srfAB	CAE02631.1	3 586	483	13.5	Surfactin non-ribosomal peptide synthetase SrfAB
comS	CAE02632.1	48	21	43.8	Competence protein ComS
srfAC	CAE02633.1	1 279	1 111	86.9	Surfactin non-ribosomal peptide synthetase SrfAC
srfAD	CAE02634.1	143	139	98.4	Surfactin non-ribosomal peptide synthetase SrfAD
aat	CAE02635.1	539	434	80.5	Hypothetical protein
ycxC	CAE02636.1	456	80	17.5	DMT family transporter
ycxD	CAE02637.1	555	179	32.3	PLP-dependent aminotransferase family protein
sfp	CAE02638.1	224	215	96.0	4'-phosphopantetheinyl transferase superfamily protein
yczE	CAE02639.1	215	209	97.2	Yit family protein
yckI	CAE02640.1	247	245	99.2	Cystine ABC transporter ATP-binding protein TcyC
yckJ	CAE02641.1	229	167	72.9	Amino acid ABC transporter permease

图 9 发酵液 UPLC-MS/MS 出峰时间图 Figure 9 Peak time of SQ-2 crude extract UPLC-MS/MS.

多烯类 bacillaene (图 10A), antiSMASH 预测相 似度为 100%; 对应的出峰时间 30-35 min 的 m/z 为 881.25、882.25 的[M+H]⁺峰是儿茶酚型 嗜铁素 bacillibactin (图 10B), antiSMASH 预测 相似度为 100%; 对应的出峰时间 20-23 min 的 m/z 为 1 022.68、1 036.68, 对应的是表面活性 素 surfactin [M+H]⁺峰(图 10C), antiSMASH 预 测相似度为 39%。依据以上结果推测,该菌株 可能产生表面活性肽(surfactin)、儿茶酚型嗜铁 素(bacillibactin)和多烯类(bacillaene)这 3类脂肽 类抗生素。

利用 antiSMASH 在线工具预测到菌株

SQ-2 有 6 种已知的抑菌物质合成基因簇,但 UPLC-MS/MS 只检测分析到其中的 3 类,这种 现象的出现有两种可能性:(1) 另外 3 个基因簇 未表达或表达量过低,无法检出;(2) UPLC/MS 检测方式比较单一,通过相对分子量和出峰时 间的判定方法有一定局限性,后续还需要进一 步研究。

2.8 菌株 SQ-2 的 *srfAA* 基因缺失突变体 SQ-2Δ*srfAA* 的构建与鉴定

采用电转化法将 pMAD-Δ*srfAA* 转入解淀 粉芽孢杆菌 SQ-2 中,经过抗生素筛选和蓝白斑 筛选,挑选阳性菌株,对其进行质粒提取和酶

Figure 10 UPLC-MS/MS spectrum of strain SQ-2 crude extract.

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

切鉴定, 经 30 ℃ 双交换及高温质粒丢失, 最终筛 选出 *srfAA* 基因缺失突变体。为鉴定突变子的构建 是否成功, 以菌株 SQ-2Δ*srfAA* 为模板, 以 *srfAA*-1/*srfAA*-4、P3/P4 为引物对分别进行 PCR 扩 增,并以菌株 SQ-2 为阴性对照, 所得产物进行琼 脂糖凝胶电泳检测。由图 11 可知, 采用引物对 *srfAA*-1/*srfAA*-4, 在菌株 SQ-2 上得到大小约为 2.7 kb (up-*srfAA*-down)的片段, 在菌株 SQ-2Δ*srfAA* 上得到大小约为 3.1 kb (up-*spc*-down)的片段; 采

图 11 突变菌株 SQ-2Δ*srfAA* 的 PCR 检测结果 M: DNA Marker; 1: 以 P3/P4 为引物对,以突变 子 SQ-2Δ*srfAA* 为模板扩增出来的片段; 2: 以 P3/P4 为引物对,以菌株 SQ-2 为模板扩增出来的片段; 3: 以 *srfAA*-1/*srfAA*-4 为引物对,以菌株 SQ-2 为模板 扩增出来的片段; 4: 以 *srfAA*-1/*srfAA*-4 为引物对, 以突变子 SQ-2Δ*srfAA* 为模板扩增出来的片段

Figure 11 The results of PCR of strain SQ-2 Δ srfAA. M: DNA Marker; 1: A fragment amplified with P3/P4 as primer and mutant SQ-2 Δ srfAA as template; 2: A fragment amplified with P3/P4 as primer and mutant SQ-2 as template; 3: A fragment amplified with srfAA-1/srfAA-4 as primer and mutant SQ-2 as template; 4: A fragment amplified with srfAA-1/srfAA-4 as primer and mutant SQ-2 Δ srfAA as template.

用引物对 P3/P4,在菌株 SQ-2 上得到大小约 为 732 bp (*srfAA*)的片段,菌株 SQ-2Δ*srfAA* 未 扩增出片段。上述结果初步表明,突变菌株 SQ-2Δ*srfAA* 的 *srfAA* 基因已经被敲除,将 PCR 产物纯化并测序,所得结果进一步证实之前的 结论。

2.9 解淀粉芽孢杆菌 SQ-2 野生型及突变 子发酵液混合体系 UPLC-MS/MS 比较分析

为进一步验证野生型菌株 SQ-2 是否产生 表面活性素,我们构建了 *srfAA* 缺失菌株 SQ-2Δ*srfAA*,并利用液质联用研究其发酵液中所 产物质(图 12B)。与野生型 SQ-2 的发酵液液质图 (图 12A)对比得出,我们并未在 20-23 min 发 现 surfactin [M+H]⁺峰,这说明突变子未产生表 面活性素,说明 *srfAA* 基因缺失突变子构建成 功,也证明了野生型菌株 SQ-2 产生的次级代谢 产物中包含表面活性素。

3 讨论

许多由病原微生物引起的植物病害会导致 重要作物的质量和产量下降。随着人们对环境 可持续性和消费者健康的日益关注, 合成化学 杀菌剂在农业中的应用受到限制。因此迫切需 要开发环境友好的替代品,以取代农药的过度 使用。在这种情况下, 解淀粉芽孢杆菌是农业 上很有前途的生物防治剂,作为促进植物生长的 根际细菌(plant growth promoting rhizobacteria, PGPR), 解淀粉芽孢杆菌在可持续农业中替代 化学杀菌剂方面显示出良好的前景。例如,由 葡萄座腔菌引起的苹果轮纹病是影响亚洲苹果 产量的重要病害之一, Chen 等研究发现解淀粉 芽孢杆菌 PG12 可以有效地防治苹果轮纹病^[31]; Ahmed 等发现解淀粉芽孢杆菌 WS-10 可用作烟 草青枯病的生物防治剂,并且还能促进烟草生 长^[32]。除细菌、真菌外,虫害也威胁着植物的

A: SQ-2 野生型所产发酵液液质图谱. B: SQ-2ΔsrfAA

所产发酵液液质图谱

Figure 12 The UPLC-MS/MS analysis of SQ-2 wild type and mutant. A: The UPLC-MS/MS analysis of strain SQ-2 wild type. B: The UPLC-MS/MS analysis of SQ-2 Δ srfAA.

健康和生长。芽孢杆菌 FZB42 可减少根中线虫 卵、土壤中幼年蠕虫的数量^[33]。据报道, 解淀 粉芽孢杆菌 B9601-Y2 还可以减少植物根结线 虫的数量^[34]。

除真菌、细菌等生物胁迫外,盐度、干旱 和重金属等非生物胁迫也是导致植物生长缓 慢、质量和产量下降的主要原因。近年来,增 强植物对非生物胁迫的耐受性成为研究热点。 据报道,解淀粉芽孢杆菌可以提高植物对非生 物胁迫的耐受性。例如,Kasim 等研究发现解 淀粉芽孢杆菌 5113 可以改善干旱胁迫下的小 麦生长,显著减轻了干旱胁迫对小麦生长的有 害影响^[35];Shahzad 等报道了解淀粉芽孢杆菌 RWL-1 对各种重金属(铜、铬、铅、镉)的耐受 性,RWL-1 增强了植物的氨基酸调节和抗氧化 水平,在重金属胁迫下,RWL-1 显著促进了植 物生长^[36]。

据报道, 解淀粉芽孢杆菌还可以诱导植物 系统抗性(induced systemic resistance, ISR)。与 系统获得性抗性不同,系统获得性抗性是由与 植物地上部分相关的病原微生物触发的, ISR 是指由于非致病微生物的局部刺激而增强防御 能力^[37]。Debois 等在解淀粉芽孢杆菌定殖的植 物根系附近未检测到聚酮类化合物和其他抗细 菌生物活性化合物^[38]。因此,研究人员推测解 淀粉芽孢杆菌可能触发 ISR 以抑制病原体。例 如, 解淀粉芽孢杆菌 S13-3 通过在草莓叶片中 产生 iturinA 和表面活性剂来诱导植物防御^[39]。 此外, 解淀粉芽孢杆菌可刺激与诱导抗性相关 的防御酶,如苯丙氨酸解氨酶、过氧化物酶、 多酚氧化酶和 β-1,3-葡聚糖酶^[40]。尽管 ISR 不 是解淀粉芽孢杆菌的直接抗致病作用,但其在 植物疾病防御中起着不可或缺的作用。

采用 antiSMASH 在线工具预测菌株 SQ-2 的次级代谢产物基因簇,得到脂肽类和聚酮类

抗生素基因簇共11个,其中有5个抗生素合成 基因簇(bacillaene、fengycin、bacillibactin、 bacilysin 和 surfactin)与目前已知的抗生素基因 簇相似度较高,1个抗生素基因簇(butirosin)与 目前已知的抗生素基因簇相似度仅为7%,还 包括 5 个未知功能的基因簇。Bacillaene 最初 被发现是枯草芽孢杆菌产生的一种抑菌剂,通 过未知机制抑制原核而不是真核蛋白质的合 成^[41]。Fengycin 是由枯草芽孢杆菌合成的一种 抑菌物质,主要针对真菌感染的免疫反应,可通 过破坏靶细胞的细胞膜发挥作用^[42]; bacilysin 是由L-丙氨酸和L-抗荚膜菌素组成非核糖体形 成的二肽抗生素, 在群体感应的控制下由芽孢 杆菌产生和分泌^[43]。研究表明, bacilysin 对孢 子形成和形态发生的某些蛋白质的表达有影 响^[44]; surfactin 具有很强的表面活性,其疏水 性质使之能与膜结合的磷脂相互作用^[45],除此 之外, surfactin 还对许多癌症类型(如乳腺癌、 结肠癌)细胞产生细胞毒性^[46]。Butirosin 是一种 氨基糖苷类抗生素,对假单胞菌、沙门氏菌等 有抑制作用[47]。

除非挥发性抗菌化合物外,随着近年研究 工作的深入,一些挥发性有机化合物(volatile organic compounds, VOCs)的功能被揭示。挥发 性有机化合物是低分子量化合物,在常温常压 下容易蒸发。研究表明,芽孢杆菌产生的 VOCs 可抑制植物真菌病原体的生长和孢子萌发^[48]。 例如,在从解淀粉芽孢杆菌 NJN-6 中检测到的 36 种挥发性有机化合物中,有 11 种化合物可以 完全抑制真菌生长^[49],并且解淀粉芽孢杆菌 NJN-6 产生的 VOCs 抑制了尖孢镰刀菌的生长 和孢子萌发^[50]。除抗真菌活性外,生防菌株产 生的 VOCs 还可以改善植物生长,诱导植物对 植物病原体的抗性^[51]。Wu 等报告了此类发现, 解淀粉芽孢杆菌 L3 产生的挥发性有机化合物 丙酮和 2,3-丁二醇可促进拟南芥植株的地上 部和根系生长,并对尖孢镰刀菌具有抗真菌活 性^[52]。综上可知,解淀粉芽孢杆菌产生的挥发 性有机物也是使其具有生防能力的原因之一。

4 结论

本研究分离筛选出一株具有优良抗真菌特性的革兰氏阳性菌——解淀粉芽孢杆菌 SQ-2,通过拮抗试验验证了菌株 SQ-2 对串珠镰刀菌等4种病原真菌的生防效果。

本研究采用 Illumina HiSeq X10 高通量测 序平台对生防菌株 SQ-2 进行全基因组测序。研 究分析发现,菌株 SO-2 存在 6 种重要的次级代 谢产物基因簇,它们分别为多烯类(bacillaene)、 丰原素(fengycin)、儿茶酚型嗜铁素(bacillibactin)、 杆菌溶素(bacilysin)、表面活性肽(surfactin) 和丁酰苷菌素(butirosin)。除此之外, 推测解淀粉 芽孢杆菌 SQ-2 的抑菌原理之一为降解植物病原 真菌的细胞壁或改变真菌的膜通透性。UPLC/MS 分析发现 3 个化合物的分子量与 antiSMASH 预测3种抗菌物质基因簇产物的分子量一致, 它们是儿茶酚型嗜铁素(bacillibactin)、多烯类 (bacillaene)和表面活性肽(surfactin)脂肽类抗生 素,推测SQ-2的抗真菌活性与这3种物质有关。 通过以上信息预测菌株 SQ-2 能够通过产生多 种抑菌物质和产生细胞壁水解酶来实现生物防 治效果,有很大的农业应用潜力。

REFERENCES

- FUKUMOTO J, YAMAMOTO T, TSURU D. Effects of carbon sources and base analogues of nucleic acid on the formation of bacterial amylase[J]. Nature, 1957, 180(4583): 438-439.
- [2] PRIEST FG, GOODFELLOW M, SHUTE LA, Berkeley RCW. Bacillus amyloliquefaciens sp. nov., nom. rev[J]. International Journal of Systematic Bacteriology, 1987,

37(1): 69-71.

- [3] 张宝俊,张家榕,韩巨才,刘慧平,王建明.内生解淀粉芽孢杆菌LP-5抗菌蛋白的分离纯化及特性[J]. 植物保护学报,2010,37(2):143-147.
 ZHANG BJ, ZHANG JR, HAN JC, LIU HP, WANG JM. Purification and characterization of an antifungal protein from endophytic *Bacillus amyloliquefaciens* LP-5[J]. Journal of Plant Protection, 2010, 37(2): 143-147 (in Chinese).
- [4] 王德培, 孟慧, 管叙龙, 罗学刚. 解淀粉芽孢杆菌 BI2 的鉴定及其对黄曲霉的抑制作用[J]. 天津科技大学学 报, 2010, 25(6): 5-9.
 WANG DP, MENG H, GUAN XL, LUO XG. Identification of *Bacillus amyloliquefaciens* BI2 and its antagonistic activity against *Aspergillus flavus*[J]. Journal of Tianjin University of Science & Technology,
- [5] IMAI I, SUNAHARA T, NISHIKAWA T, HORI Y, KONDO R, HIROISHI S. Fluctuations of the red tide flagellates *Chattonella* spp. (*Raphidophyceae*) and the algicidal bacterium *Cytophaga* sp. in the Seto Inland Sea, Japan[J]. Marine Biology, 2001, 138(5): 1043-1049.

2010, 25(6): 5-9 (in Chinese).

- [6] LIU D, LI KY, HU JL, WANG WY, LIU X, GAO ZM. Biocontrol and action mechanism of *Bacillus amyloliquefaciens* and *Bacillus subtilis* in soybean *Phytophthora* blight[J]. International Journal of Molecular Sciences, 2019, 20(12): 2908.
- [7] DUAN YN, CHEN R, ZHANG R, JIANG WT, CHEN XS, YIN CM, MAO ZQ. Isolation, identification, and antibacterial mechanisms of *Bacillus amyloliquefaciens* QSB-6 and its effect on plant roots[J]. Frontiers in Microbiology, 2021, 12: 746799.
- [8] XU SJ, WANG YX, HU JQ, CHEN XR, QIU YF, SHI JR, WANG G, XU JH. Isolation and characterization of *Bacillus amyloliquefaciens* MQ01, a bifunctional biocontrol bacterium with antagonistic activity against *Fusarium graminearum* and biodegradation capacity of zearalenone[J]. Food Control, 2021, 130: 108259.
- [9] PRAJAPATI VS, RAY S, NARAYAN J, JOSHI CC, PATEL KC, TRIVEDI UB, PATEL RM. Draft genome sequence of a thermostable, alkaliphilic α-amylase and protease producing *Bacillus amyloliquefaciens* strain KCP2[J]. 3 Biotech, 2017, 7(6): 372.
- [10] NARH MENSAH DL, WINGFIELD BD, COETZEE MPA. Nonribosomal peptide synthetase gene clusters

and characteristics of predicted NRPS-dependent siderophore synthetases in *Armillaria* and other species in the *Physalacriaceae*[J]. Current Genetics, 2022, https://doi.org/10.1007/s00294-022-01256-w.

- [11] SUI XN, HAN XB, CAO JM, LI YQ, YUAN Y, GOU JY, ZHENG YF, MENG C, ZHANG CS. Biocontrol potential of *Bacillus velezensis* EM-1 associated with suppressive rhizosphere soil microbes against tobacco bacterial wilt[J]. Frontiers in Microbiology, 2022, 13: 940156.
- [12] HANCOCK RE. Peptide antibiotics[J]. Lancet (London, England), 1997, 349(9049): 418-422.
- [13] CHEN XH, KOUMOUTSI A, SCHOLZ R, EISENREICH A, SCHNEIDER K, HEINEMEYER I, MORGENSTERN B, VOSS B, HESS WR, REVA O, JUNGE H, VOIGT B, JUNGBLUT PR, VATER J, SSMUTH R, LIESEGANG H, STRITTMATTER A, GOTTSCHALK G, BORRISS R. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium *Bacillus amyloliquefaciens* FZB42[J]. Nature Biotechnology, 2007, 25(9): 1007-1014.
- [14] CHEN XH, KOUMOUTSI A, SCHOLZ R, BORRISS R. More than anticipated - production of antibiotics and other secondary metabolites by *Bacillus amyloliquefaciens* FZB42[J]. Journal of Molecular Microbiology and Biotechnology, 2009, 16(1/2): 14-24.
- [15] 姚佳明, 田亚平. 解淀粉芽孢杆菌抑菌肽的分离鉴定及其抑菌谱表征[J]. 食品科学, 2020, 41(16): 126-131.
 YAO JM, TIAN YP. Isolation and identification of antimicrobial peptides produced by *Bacillus amyloliquefaciens* and characterization of their antibacterial spectra[J]. Food Science, 2020, 41(16): 126-131 (in Chinese).
- [16] 杨杰. 枯草杆菌 fmb60 的 NRPS 和 I 型 PKS 基因簇代 谢产物发掘及其生物活性研究[D]. 南京: 南京农业大 学博士学位论文, 2017.
 YANG J. Discovery of metabolites of NRPS and type I PKS gene clusters of *Bacillus subtilis* fmb60 and their

biological activities[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2017 (in Chinese).

[17] DIETEL K, BEATOR B, BUDIHARJO A, FAN B, BORRISS R. Bacterial traits involved in colonization of *Arabidopsis thaliana* roots by *Bacillus amyloliquefaciens* FZB42[J]. The Plant Pathology Journal, 2013, 29(1): 59-66.

- [18] IDRIS EE, IGLESIAS DJ, TALON M, BORRISS R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by *Bacillus amyloliquefaciens* FZB42[J]. Molecular Plant-Microbe Interactions: MPMI, 2007, 20(6): 619-626.
- [19] RAMÍREZ CA, KLOEPPER JW. Plant growth promotion by *Bacillus amyloliquefaciens* FZB45 depends on inoculum rate and P-related soil properties[J]. Biology and Fertility of Soils, 2010, 46(8): 835-844.
- [20] 王继华, 徐世强, 张木清. 解淀粉芽孢杆菌的研究进展[J]. 亚热带农业研究, 2017, 13(3): 191-195.
 WANG JH, XU SQ, ZHANG MQ. Research progress on *Bacillus amyloliquefaciens*[J]. Subtropical Agriculture Research, 2017, 13(3): 191-195 (in Chinese).
- [21] 牛馨, 张莹, 王茂军, 刘文龙, 路福平, 李玉. 解淀粉芽 胞杆菌不同整合位点对外源碱性蛋白酶表达的影响[J]. 生物技术通报, 2022, 38(4): 253-260.
 NIU X, ZHANG Y, WANG MJ, LIU WL, LU FP, LI Y. Effects of different integration sites on the expression of exogenous alkaline protease in *Bacillus amyloliquefaciens*[J]. Biotechnology Bulletin, 2022, 38(4): 253-260 (in Chinese).
- [22] AFSHARMANESH H, AHMADZADEH M, JAVAN-NIKKHAH M, BEHBOUDI K. Improvement in biocontrol activity of *Bacillus subtilis* UTB1 against *Aspergillus flavus* using gamma-irradiation[J]. Crop Protection, 2014, 60(1): 83-92.
- [23] LI XJ, ZHANG MY, QI DF, ZHOU DB, QI CL, LI CY, LIU SW, XIANG DD, ZHANG L, XIE JH, WANG W. Biocontrol ability and mechanism of a broad-spectrum antifungal strain *Bacillus safensis* sp. QN1NO-4 against strawberry anthracnose caused by *Colletotrichum fragariae*[J]. Frontiers in Microbiology, 2021, 12: 735732.
- [24] MEDEMA MH, BLIN K, CIMERMANCIC P, de JAGER V, ZAKRZEWSKI P, FISCHBACH MA, WEBER T, TAKANO E, BREITLING R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J]. Nucleic Acids Research, 2011, 39(suppl_2): W339-W346.
- [25] 蔡国磊,陆小凯,娄水珠,杨海英,杜刚.芽孢杆菌 LM 基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报,2021,37(8):176-185.

CAI GL, LU XK, LOU SZ, YANG HY, DU G. Classification and identification of *Bacillus* LM based on whole genome and study on its antibacterial principle[J]. Biotechnology Bulletin, 2021, 37(8): 176-185 (in Chinese).

[26] 夏扬. 一种新型东亚钳蝎钠通道毒素 BmKNaTx12 的 基因克隆、重组制备与鉴定[D]. 南京:南京中医药大 学硕士学位论文, 2017.

XIA Y. Cloning, recombinant preparation and identification of a novel sodium channel toxin BmKNaTx12 from *Buthus martensii* Karsch[D]. Nanjing: Master's Thesis of Nanjing University of Chinese Medicine, 2017 (in Chinese).

- [27] 肖析蒙. 一株纤维素降解菌的分离鉴定及其在酿酒上的应用初探[D]. 成都:西华大学硕士学位论文,2020. XIAO XM. Isolation and identification of a cellulose-degrading strain and its application in brewing[D]. Chengdu: Master's Thesis of Xihua University, 2020 (in Chinese).
- [28] 吴尉凤, 饶秋华, 柯文辉, 刘洋, 卓艺蓉, 郑欣欣, 罗 土炎. 金鱼源维氏气单胞菌 JY01 全基因组测序及生 物信息分析[J]. 福建农业科技, 2021, 52(7): 18-25.
 WU WF, RAO QH, KE WH, LIU Y, ZHUO YR, ZHENG XX, LUO TY. Whole genome sequencing and bioinformatic analysis of *Aeromonas veronii* JY01 from goldfish[J]. Fujian Agricultural Science and Technology, 2021, 52(7): 18-25 (in Chinese).
- [29] KIM PI, CHUNG KC. Production of an antifungal protein for control of *Colletotrichum lagenarium* by *Bacillus amyloliquefaciens* MET0908[J]. FEMS Microbiology Letters, 2004, 234(1): 177-183.
- [30] STRUYFS C, CAMMUE BPA, THEVISSEN K. Membrane-interacting antifungal peptides[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 649875.
- [31] CHEN XY, ZHANG YY, FU XC, LI Y, WANG Q. Isolation and characterization of *Bacillus amyloliquefaciens* PG12 for the biological control of apple ring rot[J]. Postharvest Biology and Technology, 2016, 115: 113-121.
- [32] AHMED W, ZHOU GS, YANG J, MUNIR S, AHMED A, LIU Q, ZHAO ZX, JI GH. *Bacillus amyloliquefaciens* WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 1-14.
- [33] BURKETT-CADENA M, KOKALIS-BURELLE N,

LAWRENCE KS, van SANTEN E, KLOEPPER JW. Suppressiveness of root-knot nematodes mediated by rhizobacteria[J]. Biological Control, 2008, 47(1): 55-59.

- [34] HE PF, HAO K, BLOM J, RCKERT C, VATER J, MAO ZC, WU YX, HOU MS, HE PB, HE YQ, BORRISS R. Genome sequence of the plant growth promoting strain *Bacillus amyloliquefaciens* subsp. *plantarum* B9601-Y2 and expression of mersacidin and other secondary metabolites[J]. Journal of Biotechnology, 2012, 164(2): 281-291.
- [35] KASIM WA, OSMAN ME, OMAR MN, ABD EL-DAIM IA, BEJAI S, MEIJER J. Control of drought stress in wheat using plant-growth-promoting bacteria[J]. Journal of Plant Growth Regulation, 2013, 32(1): 122-130.
- [36] SHAHZAD R, BILAL S, IMRAN M, KHAN AL, ALOSAIMI AA, AL-SHWYEH HA, ALMAHASHEER H, REHMAN S, LEE IJ. Amelioration of heavy metal stress by endophytic *Bacillus amyloliquefaciens* RWL-1 in rice by regulating metabolic changes: potential for bacterial bioremediation[J]. The Biochemical Journal, 2019, 476(21): 3385-3400.
- [37] ZHAO HH, WANG XB, WANG W. Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against *Rhizoctonia solani*[J]. Pathogens, 2021, 11(1): 35-35.
- [38] DEBOIS D, JOURDAN E, SMARGIASSO N, THONART P, de PAUW E, ONGENA M. Spatiotemporal monitoring of the antibiome secreted by *Bacillus* biofilms on plant roots using MALDI mass spectrometry imaging[J]. Analytical Chemistry, 2014, 86(9): 4431-4438.
- [39] YAMAMOTO S, SHIRAISHI S, SUZUKI S. Are cyclic lipopeptides produced by *Bacillus amyloliquefaciens* S13-3 responsible for the plant defence response in strawberry against *Colletotrichum gloeosporioides*?[J]. Letters in Applied Microbiology, 2015, 60(4): 379-386.
- [40] GOWTHAM HG, MURALI M, SINGH SB, LAKSHMEESHA TR, NARASIMHA MURTHY K, AMRUTHESH KN, NIRANJANA SR. Plant growth promoting rhizobacteria- *Bacillus amyloliquefaciens* improves plant growth and induces resistance in chilli against anthracnose disease[J]. Biological Control, 2018, 126: 209-217.
- [41] PATEL PS, HUANG S, FISHER S, PIRNIK D, AKLONIS C, DEAN L, MEYERS E, FERNANDES P,

MAYERL F. Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by *Bacillus subtilis*: production, taxonomy, isolation, physico-chemical characterization and biological activity[J]. The Journal of Antibiotics, 1995, 48(9): 997-1003.

- [42] CHEN L, SHI H, HENG, JY, WANG DX, BIAN K. Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte *Bacillus velezensis* LDO2[J]. Microbiological Research, 2019, 218: 41-48.
- [43] LI QR, LIAO ST, WEI JH, XING DX, XIAO Y, YANG Q. Isolation of *Bacillus subtilis* strain SEM-2 from silkworm excrement and characterization of its antagonistic effect against *Fusarium* spp.[J]. Canadian Journal of Microbiology, 2020, 66(6): 401-412.
- [44] ERTEKIN O, KUTNU M, TAKIN AA, DEMIR M, KARATAAY, ZCENGIZ G. Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in *Bacillus subtilis*[J]. Journal of Microbiology (Seoul, Korea), 2020, 58(4): 297-313.
- [45] SANTOS VSV, SILVEIRA E, PEREIRA BB. Toxicity and applications of surfactin for health and environmental biotechnology[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2018, 21(6/8): 382-399.
- [46] WU YS, NGAI SC, GOH BH, CHAN KG, LEE LH, CHUAH LH. Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery[J]. Frontiers in Pharmacology, 2017, 8: 761.

- [47] HEIFETZ CL, CHODUBSKI JA, PEARSON IA, SILVERMAN CA, FISHER MW. Butirosin compared with gentamicin *in vitro* and *in vivo*[J]. Antimicrobial Agents and Chemotherapy, 1974, 6(2): 124-135.
- [48] TAHIR HAS, GU Q, WU HJ, NIU YD, HUO R, GAO XW. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt[J]. Scientific Reports, 2017, 7: 40481.
- [49] YUAN J, LI B, ZHANG N, WASEEM R, SHEN QR, HUANG QW. Production of bacillomycin- and macrolactin-type antibiotics by *Bacillus amyloliquefaciens* NJN-6 for suppressing soilborne plant pathogens[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 2976-2981.
- [50] YUAN J, RAZA W, SHEN QR, HUANG QW. Antifungal activity of *Bacillus amyloliquefaciens* NJN-6 volatile compounds against *Fusarium oxysporum* f. sp. *cubense*[J]. Applied and Environmental Microbiology, 2012, 78(16): 5942-5944.
- [51] GAO ZF, ZHANG BJ, LIU HP, HAN JC, ZHANG YJ. Identification of endophytic *Bacillus velezensis* ZSY-1 strain and antifungal activity of its volatile compounds against *Alternaria solani* and *Botrytis cinerea*[J]. Biological Control, 2017, 105: 27-39.
- [52] WU YC, ZHOU JY, LI CG, MA Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by *Bacillus amyloliquefaciens*[J]. Microbiology Open, 2019, 8(8): e00813.