微生物学通报

Microbiology China tongbao@im.ac.cn http://journals.im.ac.cn/wswxtbcn

非核糖体肽 Skyllamycin B 生物合成中 I 型硫酯酶底物杂泛 性的初步研究

宋娟 于佳慧 李安南 关梦铁 耿彤彤 张中义 杨东辉 马明* 北京大学药学院 天然药物及仿生药物国家重点实验室 北京 100191

摘 要:【背景】Skyllamycins 是一类从链霉菌中发现的具有血小板生长因子抑制和生物膜抑制作用的非核糖体肽类,其环肽环合反应是由非核糖体肽合成酶中的硫酯酶功能域催化完成。【目的】克隆和表达 Skyllamycin 非核糖体肽合成酶最后一个模块中的硫酯酶切能域催化完成。【目的】克隆和表达 Skyllamycin 非核糖体肽合成酶最后一个模块中的硫酯酶(Skyxy-TE)基因,合成 Skyxy-TE 底物类似物,通过体外催化实验表征 Skyxy-TE 的底物杂泛性。【方法】采用 Ligation Independent Cloning (LIC)方法,从一株含有 Skyllamycin B 生物合成基因簇的链霉菌 Streptomyces sp. PKU-MA01239 中克隆和表达 skyxy-TE,通过镍离子柱亲和层析纯化 Skyxy-TE。运用固相多肽合成法合成 2 个底物类似物 1 和 2,进行 Skyxy-TE 的体外催化实验。【结果】通过对 Skyxy-TE 的表达绝化,获得了纯度较好的可溶性蛋白;通过固相多肽合成,得到了能够模拟 Skyllamycin B 底物 类似物的化合物 1 和 2,硫酯酶蛋白体外催化化合物 1 和 2 得到了化合物 3 和 4,化合物 3 和 4 通过 核磁共振和高分辨质谱确认为环肽。【结论】Skyllamycin B 生物合成中 Skyxy-TE 表现出一定的底 物杂泛性,可以识别底物类似物催化环化反应,该研究为将来利用化学-酶联法制备更多环肽类似物 提供了依据。

关键词:化学-酶联法,Skyllamycin,固相多肽合成法,底物杂泛性,硫酯酶

Characterization of the substrate promiscuity of type I thioesterase in skyllamycin B biosynthesis

SONG Juan YU Jiahui LI Annan GUAN Mengtie GENG Tongtong ZHANG Zhongyi YANG Donghui MA Ming^{*}

Abstract: [Background] Skyllamycins are nonribosomal cyclic depsipeptides that possess inhibitory activity against the platelet-derived growth factor (PDGF) signaling pathway and antibiofilm activity. The cyclization reaction in skyllamycin biosynthesis is catalyzed by the thioesterase domain. [Objective] To characterize the substrate promiscuity of thioesterase domain, we cloned and expressed the thioesterase-encoding gene, synthesized substrate mimics and carried out the cyclization reactions *in vitro*.

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

Foundation items: National Natural Science Foundation of China (21877002); National Key Research and Development Program of China (2019YFC0312502)

^{*}Corresponding author: E-mail: mma@bjmu.edu.cn Received: 03-02-2021; Accepted: 04-05-2021

基金项目:国家自然科学基金(21877002);国家重点研发计划(2019YFC0312502)

^{*}通信作者: E-mail: mma@bjmu.edu.cn

收稿日期: 2021-02-03; 接受日期: 2021-05-04

[Methods] The thioesterase domain (Skyxy-TE)-encoding gene was cloned from *Streptomyces* sp. PKU-MA01239 with ligation-independent cloning method, Skyxy-TE was purified by Ni-NTA affinity chromatography, and substrate mimics were synthesized by using solid-phase peptide synthesis (SPPS). [Results] Soluble Skyxy-TE was obtained and purified to homogeneity, and two substrate mimics 1 and 2 were synthesized by SPPS. Cyclization reactions were carried out *in vitro*, leading to the production of two cyclized peptides 3 and 4, whose structures were elucidated by NMR and HRESIMS analysis. [Conclusion] Skyxy-TE showed substrate promiscuity by catalyzing two substrate mimics to generate cyclization products, which facilitates the generation of more cyclized peptide analogues by chemoenzymatic synthesis in the future.

Keywords: chemoenzymatic synthesis, skyllamycin, solid-phase peptide synthesis, substrate promiscuity, thioesterase

非核糖体肽是由非核糖体肽合成酶 (Nonribosomal Peptide Synthetase, NRPS)产生的 结构复杂、种类繁多的天然产物,它们主要由微 生物产生,是临床药物的重要来源,尤其在抗 癌、抗感染方面有较多应用^[1]。Skyllamycin B 是 从链霉菌 Streptomyces sp. Acta 2897 中分离得到 的非核糖体肽类化合物(图 1)^[2],为生物膜形成 抑制剂^[3]。其同系物对血小板生长因子(Platelet-Derived Growth Factor, PDGF)具有强抑制作用^[4]。 Skyllamycin 的生物合成基因簇以及生物合成途径 相关研究已经被报道,其生物合成基因簇中的修 饰基因 sky32、sky37、sky39、sky40、sky41 的敲 除实验,证明了这几个修饰基因的功能^[2]。此 外,研究人员还通过点突变的方法阐明了 P450 酶 (Sky32)催化产生3个氨基酸残基上β-OH的形成, 解释了 3 个 β-OH 的生物合成顺序^[5]; 其 NRPS 最 后一个模块中的 I 型硫酯酶功能域(Thioesterase Domain, TE Domain)被推测催化分子内环化反 应,产生 Skyllamycin 的环肽骨架^[5]。

硫酯酶功能域在非核糖体肽生物合成过程中 催化链状中间体从 NRPS 上释放下来^[6]。在催化底 物释放时,硫酯酶决定了形成链肽还是环肽以及环 肽环合的位置。目前已有较多对 NRPS 中硫酯酶体 外催化表征的报道,发现某些硫酯酶表现出了广 泛的底物杂泛性,可以催化化学合成底物类似物 产生一系列环肽分子^[7-11]。由于链状肽类分子位 置特异性的环化对于化学合成来说仍具有较大挑 战性[12], 硫酯酶的底物杂泛性可被用来进行化 学-酶联反应,以在温和条件下实现环肽分子的 制备。本研究从合成 Skyllamycin B 的海洋链霉菌 Streptomyces sp. PKU-MA01239 基因组中克隆了 NRPS 中硫酯酶(Skyxy-TE)编码基因,在大肠杆菌 中进行了过表达和后续的蛋白纯化。利用固相多 肽合成的方法^[13-15]合成 Skyxy-TE 的原始底物 (Pre-Skyllamycin B)的类似物 1 和 2 (图 2)。化合 物1和2中肉桂酰片段(Cinnamoyl, Cin)可以模拟 Pre-Skyllamycin B 的脂酰片段(2-[1-(Z)-Propenyl]-Cinnamoyl, PrnCin), C 端连接 N-乙酰基半胱氨 (N-Acetylcysteaminyl, SNAC)基团以模拟肽基载体 蛋白(Peptidyl Carrier Protein, PCP)的磷酸泛酰巯 基乙胺基^[16]。本研究初步表征了 Skyxy-TE 的底物 杂泛性,为进一步利用 Skyxy-TE 开展化学-酶联反 应以产生更多环肽分子提供依据。

1 材料与方法

1.1 材料

1.1.1 主要试剂和仪器

KOD DNA 聚合酶,东洋纺(上海)生物科技有限公司; *Ssp* I 酶, New England Biolab 公司; T4 聚合酶,北京索莱宝生物科技有限公司; *E. coli* Fast-T1,北京诺唯赞生物技术有限公司; *E. coli* BL21(DE3),北京全式金生物技术公司;氨苄抗生素,生工生物工程(上海)股份有限公司;氨基酸及 侧链带保护基团的氨基酸和 2-氯三苯甲基氯树脂,上海吉尔生化有限公司;*N*,*N*-二异丙基乙胺(DIEA)、

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

moiety, which mimicks the phosphopantetheinyl moiety of PCP₁₁-tethered native substrate, was labeled in red

1-羟基苯并三唑(HOBt)、2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)、三氟乙 酸(TFA)、二环己基碳二亚胺(DCC)、4-二甲氨基 吡啶(DMAP)、N-乙酰基半胱氨(SNAC)和 3-(N-吗 啡啉)丙磺酸(MOPS),北京百灵威科技有限公 司;其余试剂均为分析纯。

高效液相色谱仪(HPLC),安捷伦科技公司; 中压液相色谱仪(MPLC),北京创新通恒科技有限 公司;制备型高效液相色谱仪(pre-HPLC),科学 系统公司;快速蛋白液相色谱仪(FPLC),通用电 气公司;NanoDrop 2000C分光光度计,赛默飞世 尔科技公司;超声波细胞粉碎机,宁波新芝生物 科技股份有限公司;高速冷冻离心机,湖南湘仪 实验室仪器开发有限公司;SequoPure 纯水仪, 上海乐枫生物科技有限公司。

1.1.2 培养基

LB 液体培养基: 胰蛋白胨 10.0 g, 氯化钠 10.0 g, 酵母提取物 5.0 g, 加蒸馏水至 1 L, 调节 pH 值至 7.2-7.4, 1×10⁵ Pa 灭菌 20 min。

F 液体培养基: 酵母提取物 1.0 g, 胰蛋白胨 5.0 g, 牛肉膏 1.0 g, FePO₄ 0.01 g, 海盐 33.0 g, 加蒸馏水至1 L, 调节 pH 值至 7.4, 1×10⁵ Pa 灭菌 20 min。

对应固体培养基配制时加入琼脂 18 g/L。

1.1.3 菌株和质粒

Streptomyces sp. PKU-MA01239由本实验室从 广西斜阳岛海绵中分离获得,通过16S rRNA基因 测序鉴定为链霉菌属,储存于实验室菌种库。 E. coli Fast-T1用于质粒构建,E. coli BL21(DE3) 用于蛋白表达。质粒 pMCSG7 携带 Ampicillin 抗 性(ampR)基因作为表达载体^[17],质粒 pMCSG7-Skyxy-TE 为本工作构建,用于硫酯酶蛋白表达。

1.2 基因组测序及生物信息学分析

将冻存于-80 °C 的 *Streptomyces* sp. PKU-MA01239 孢子取 200 μL,分三区涂布于 F 固体 培养基平板上,28 °C 培养 5 d 后挑取多个单克 隆菌株接种于 F 液体培养基中,28 °C、220 r/min 培养3d。参照文献[18]的方法对*Streptomyces*sp. PKU-MA01239进行基因组DNA的提取,质检合格后送交上海美吉生物医药科技有限公司,采用 Illumina的HiSeq测序方法进行全基因组扫描和基 因注释。从次级代谢产物生物合成基因簇中找到 Skyllamycin 基因簇,上传 antiSMASH 5进行分析,并且通过在线 ORFfinder 和 BLAST 进行分析 比对。

1.3 基因克隆和质粒构建

Skyxy-TE 的 DNA 片段从 Streptomyces sp. PKU-MA01239 的基因组 DNA 中扩增。表达基因 扩增引物为 Skyxy-TE-F (5'-TACTTCCAATCCAAT GCCAACGACACCGACGGCGACAC-3')和 Skyxy-TE-R (5'-TTATCCACTTCCAATGCTACTTGCTTG TTCCGAGCTTTTCGGC-3′)。采用 KOD One[™] PCR Master Mix 进行 PCR 扩增, PCR 反应体系 (50 µL): Skyxy-TE-F 和 Skyxy-TE-R 引物(10 µmol/L) 各 1.5 µL, 基因组 DNA 2.0 µL, 2×PCR Master Mix 25 µL, ddH₂O 补齐至 50 µL。PCR 反应条 件: 98 °C 2 min; 98 °C 10 s, 65 °C 5 s, 68 °C 30 s, 共 35 个循环; 68 °C 5 min; 4 °C 保存。 PCR 产物经琼脂糖凝胶电泳检测后回收备用。通 过 Ligation Independent Cloning (LIC)方法^[17]引入 DNA 片段至 pMCSG7 载体中,具体操作为:质粒 pMCSG7用 Ssp I 酶消化 3 h, 之后使用凝胶电泳 进行纯化,纯化所得线性化载体在 dGTP 和 T4 聚 合酶存在情况下 25 ℃ 处理 35 min, 75 ℃ 加热 20 min; PCR 产物回收所得 Skyxy-TE 片段在 dCTP和T4聚合酶存在情况下25℃处理35min, 再75°C加热20min;处理后的线性化载体质粒和 目的基因片段在室温下混合,冰上孵育 30 min, 并转化至 E. coli Fast-T1。使用引物 T7 (5'-TAAT ACGACTCACTATAGGG-3')和 T7 ter (5'-TGCTA GTTATTGCTCAGCGG-3')进行携带目的基因的质 粒pMCSG7-Skyxy-TE的测序确认,测序由北京睿 博兴科生物技术有限公司完成。

1.4 Skyxy-TE 蛋白纯化

测序成功的质粒 pMCSG7-Skyxy-TE 转入 E. coli BL21(DE3)中,将平板上的单克隆菌点接 人 2 mL 的 LB 液体培养基中,于 37 °C、220 r/min 条件下培养 4-5 h 后,再转接入 500 mL 含终浓 度为 100 μg/mL 氨苄抗生素的 LB 液体培养基 中,于 37 ℃、220 r/min 条件下培养,直到菌落 OD600达到 0.6 左右。向培养基中加入最终浓度为 0.2 mmol/L 的异丙基硫代半乳糖苷(IPTG),于 18°C条件下诱导,并于220 r/min 持续培养18 h。 培养结束后,通过4℃、4000 r/min 离心 10 min 收 取菌体,并在破碎缓冲液(100 mmol/L Tris-HCl, 300 mmol/L NaCl, 15 mmol/L Imidazole, 10%甘 油, pH 8.0)中重悬菌体, 菌体于4°C、700 W 的 条件下,以工作2s、间歇2s共30min完成超声 菌体破碎,之后于 4°C、13 000 r/min 高速离心 50 min 后去除沉淀, 上清液通过 0.45 µm 滤膜过 滤。含有 Skyxy-TE 蛋白的上清液使用 Ni-NTA 亲 和色谱进行纯化。纯化使用缓冲溶液 A (50 mmol/L Tris-HCl, 300 mmol/L NaCl, 20 mmol/L Imidazole, pH 8.0)和缓冲溶液 B (50 mmol/L Tris-HCl, 300 mmol/L NaCl, 200 mmol/L Imidazole, pH 8.0),蛋白在50%缓冲溶液B的条件下洗脱出来。 纯化所得 Skyxy-TE 蛋白进行浓缩并使用 PD-10 脱 盐层析柱进行缓冲液置换,置换到反应缓冲液 (20 mmol/L Tris, 100 mmol/L NaCl, pH 8.0)中。 使用 NanoDrop 2000C 在 280 nm 处测试 Skyxy-TE 蛋白浓度,并在液氮中快速冷冻后储存于-80 °C 冰箱,用于酶催化反应。Skyxy-TE 蛋白的分子量 和纯度使用 SDS-PAGE 进行分析,带上 6×His 标 签表达蛋白,分子量为 32.7 kD。

1.5 固相多肽合成法合成底物 1a 和 2a

称取 200 mg (载样量为 0.948 mmol/g) 2-氯 三苯甲基氯树脂至固相合成反应管中,加入 2 mL 二氯甲烷(DCM)浸泡溶胀 15 min,用 DCM 冲洗 3次,抽干待用。向树脂中加入含有

134 mg (0.379 2 mmol) Fmoc-D-Leu-OH 和 132 µL (0.758 4 mmol) DIEA 的 2 mL DCM 溶液,置恒温 振荡器中,常温反应 40 min,反应完毕抽干反应 液,用N,N-二甲基甲酰胺(DMF)洗涤树脂3次;向 合成管中加入2 mL 封闭试剂(DMF:MeOH:DIEA= 17:2:1, 体积比), 室温振荡 30 min, 合成反应管 上端用吸耳球加压过滤掉溶剂,用 DMF 洗涤树 脂 3 次,最后一次取少量树脂,用正丁醇茚三酮 溶液检测显无色;之后进行保护基团 Fmoc 的去 除,加入2mL20%哌啶/DMF溶液反应20min, 脱去亮氨酸上 N 端的 Fmoc 保护,用 DCM、DMF 洗涤树脂各3次,最后一次用DMF洗涤,之后取 少量树脂,用正丁醇茚三酮溶液检测显示有色。 重复上述缩合方法,按照氨基酸序列将 Fmoc-氨 基酸(0.379 2 mmol)、HOBt (0.379 2 mmol)、 HATU (0.379 2 mmol)和 DIEA (0.758 4 mmol)溶解 于 2 mL DMF 中, 依次偶联 Fmoc-D-Leu-OH、 Fmoc-Gly-OH 、 Fmoc-D-Trp-OH 、 Fmoc-Tyr(OMe)-OH, Fmoc-Pro-OH, Fmoc-Phe-OH, Fmoc-Gly-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ala-OH, Fmoc-Thr(tBu)-OH、Cinnamic acid。具体合成路线见图 3A。氨 基酸连接完毕,最后一步不进行保护基团叔丁基 的去除,将中间产物 1a 从树脂释放下来。用 DCM 冲洗后,向合成管中加入 2 mL TFA-DCM (2:98, 体积比)切割试剂振荡反应10 min, 过滤, 收 集滤液,反复3次,合并收集滤液得到粗品多肽, 浓缩干燥后用甲醇溶解粗品,采用 ClaricepTM i-Series C18 Cartridge (40 g, 20-35 µm, 100 Å)色 谱柱进行 MPLC 分离纯化,流动相 A 为水、B 为 甲醇,线性梯度洗脱(70%→100% B,体积分数, 50 min), 流速 10 mL/min, 检测波长为 210 nm。对 最终纯化产品进行 LC-MS 鉴定,得到 1a (150 mg)。

2a 的合成采用相同的方法进行,在进行 第 5 和第 7 个氨基酸缩合的时候,分别使用 Fmoc-Tyr(tBu)-OH 和 Fmoc-(OMe)Tyr-OH,具体 合成路线见图 3B。氨基酸连接完毕,最后一步不 进行保护基团叔丁基的去除,将中间产物 2a 从树 脂释放下来。用 DCM 冲洗后,向合成管中加入 2 mL TFA-DCM (2:98,体积比)切割试剂振荡反应 10 min,过滤,收集滤液,反复 3 次,合并收集 滤液得到粗品多肽,浓缩干燥后用甲醇溶解粗 品,采用 ClaricepTM i-Series C18 Cartridge (40 g, 20-35 μ m, 100 Å)色谱柱进行 MPLC 分离纯 化,流动相 A 为水、B 为甲醇,线性梯度洗脱 (70%→100% B,体积分数,50 min),流速 10 mL/min,检测波长为210 nm。对最终纯化产品 进行 LC-MS 鉴定,得到 2a (180 mg)。

1.6 化合物 1 和 2 的合成和纯化

向反应器中加入含有 150 mg 1a、30 mg (0.1 mmol) SNAC $\sqrt{30}$ mg (0.1 mmol) DCC $\sqrt{1.5}$ mg (0.1 mmol) DMAP 的 2 mL DMF 溶液,在 45 °C 油 浴、600 r/min 条件下反应 12 h。LC-MS 对 1b 的 生成进行监测,直至反应不再进行,将反应体系 在氮气下吹干,加入2 mL 脱保护试剂 TFA-DCM (95:5,体积比),进行氨基酸侧链保护基团叔丁基 的去除,常温搅拌3h后,在氮气下去除溶剂,得 到黄色油状物,合成过程如图3A所示。黄色油状 物通过 MPLC 分离, 流动相 A 为水、B 为甲醇, 线 性梯度洗脱(20%→90% B,体积分数, 30 min),流 速 10 mL/min, 检测波长为 210 nm, 目标馏分进 行 pre-HPLC 纯化, YMC-Pack ODS-A column (5 µm, 250 mm×10 mm)色谱柱,乙腈-含 0.1%甲 酸的水(45:55,体积比)等度洗脱,流速2 mL/min, 检测波长 210 nm,得到底物类似物 1 (20 mg)。化 合物2采用同样的方法进行,如图3B所示,最终 得到底物类似物 2 (15 mg)。

1.7 Skyxy-TE 体外催化

将 50 μmol/L 终浓度的 Skyxy-TE 蛋白及终浓 度为 500 μmol/L 的化合物 1 和 2 于反应缓冲液 (25 mmol/L MOPS, pH 7.0)中混匀,在 28 °C 条件 下反应 30 min; 之后加入 100 μL 甲醇终止反应, 并于 13 000 r/min 高速离心 10 min,取上清进行 HPLC 检测,检测结果如图 4B 所示。以沸水煮沸 10 min 的变性蛋白作为阴性对照。催化新产生的 色谱峰经 LC-MS 确认,检测结果如图 4C 所示。

1.8 化合物 3 和 4 色谱分离纯化

将体外酶催化大量反应混合体系进行 pre-HPLC 纯化,洗脱溶剂为乙腈-含 0.1%甲酸的 水(45:55,体积比),色谱柱为 YMC-Pack ODS-A Column (5 μm, 250 mm×10 mm),检测波长 210 nm,流速2 mL/min,得到化合物3 (5.0 mg)和 化合物4(5.5 mg)。

1.9 HPLC、MS及NMR分析条件

常规 HPLC 分析条件为: A 相为水(0.1%甲酸, 体积分数), B 相为乙腈,乙腈洗脱梯度为 0-3 min (5%,体积分数), 3.0-23.0 min (5%→100%,体 积分数), 23.0-28.0 min (100%,体积分数); 流速 1 mL/min; 检测波长 190-600 nm; 柱温 25 °C,色谱 柱为 Agilent Extend-C18 (5 μ m, 250 mm×4.6 mm)。 高分辨液质联用仪为岛津离子阱飞行时间质谱仪 (IT-TOF),分析采用负离子模式。核磁数据在 Bruker Avance III 400 和 600 MHz 核磁共振仪上采 集,核磁样品溶剂 DMSO- d_{60}

2 结果与分析

2.1 非核糖体肽 Skyllamycin B 生物合成基因 簇分析

本课题组已经构建了包含海洋、土壤、植物 共生等来源的细菌菌种库(超过 3 000 株),前期从 一株海洋来源 *Streptomyces* sp. PKU-MA01239 中 发现了一个非核糖体肽 Skyllamycin B,并通过基 因组测序和生物信息学分析确定了其生物合成基 因簇,与已报道的来源于 *Streptomyces* sp. Acta 2897 的 Skyllamycin 生物合成基因簇几乎完全相 同^[19]。从推测的 Skyllamycin B 生物合成途径可知 (图 1),在 NRPS 的最后一个模块含有一个 TE 功 能域,负责整个肽链的释放以及环化(图 2A)。TE 功能域表现出的底物杂泛性已被用于化学-酶联反 应以生成环肽衍生物。例如 Tyrocidine 生物合成

中的 TE 结构域 Tyrocidine-TE 可以接受来自固相 多肽合成的模拟底物,包括不同氨基酸替换的线 性肽^[20-21]、带修饰的线性肽^[22-23]或者不同长度的 线性肽^[24]都能够催化环化。为了探讨 Skyllamycin 生物合成中 TE 的底物杂泛性,我们对发现的 *Streptomyces* sp. PKU-MA01239 中 Skyllamycin B 生物合成中的 TE (Skyxy-TE)的编码基因进行了克 隆和表达,对蛋白进行了纯化。另外合成了 2 个 Skyxy-TE 原始底物(Pre-Skyllamycin B)的类似物 1 和 2 (图 2),以初步探究 Skyxy-TE 的催化活性和 底物杂泛性。

2.2 化合物1和2的固相多肽合成和结构鉴定

按照固相多肽合成方法(图 3),我们合成了化 合物 1 和 2。化合物 1 和 2 的结构通过 NMR 和 HRESIMS 等分析得到了确证(表 1)。

化合物 1: 白色粉末; HRESIMS 数据为 m/z: 1 468.661 1 [M-H] (图 4C), 与理论分子量 1 468.661 1 相符合; 分子式: C₇₄H₉₅N₁₃O₁₇S。¹H NMR (DMSO- d_6 , 400 MHz)在最低场 $\delta_{\rm H}$ 10.8 ppm 左右为色氨酸上的吲哚氮原子连接的活泼氢信 号,在低场区 $\delta_{\rm H}$ 7.6-8.6 ppm 存在 11 个酰氨基活 泼氢信号,与 11 个酰胺键对应(10 个氨基酸和 1 个 SNAC)。在芳香区 δ_H 6.2-7.7 ppm 有 19 个氢 信号,包含14个苯环基团氢信号(2个单取代苯和 1 个对取代苯中的氢信号)和 5 个吲哚基团上的氢 信号;另外,该区域还有 2 个反式双键的特征氢 信号(*J*=16.0 Hz)。往高场区 δ_H 3.3-4.7 ppm 主要为 氨基酸 α 碳上氢信号, $\delta_{\rm H}$ 2.3–3.3 ppm 主要为氨基 酸 β 碳上氢信号, $\delta_{\rm H}$ 1.3–2.0 ppm 主要为氨基酸 γ 碳上氢信号, 高场区 $\delta_{\rm H}$ 有 6 个裂分为双峰的氨基 酸上甲基氢信号,分别为 δ_H 1.23 (3H)、1.08 (3H)、 0.87 (3H) (3 个重叠)、0.80 (3H) ppm, 对应1个丙 氨酸、1 个苏氨酸和 2 个亮氨酸中的甲基。 $\delta_{\rm H}$ 1.77 ppm 处单峰为乙酰基中甲基氢信号, 2.83 ppm 和 3.11 ppm 分别为 β 和 α 碳上氢信号,为 SNAC 氢信号。将化合物 1 的氢谱信号进行了归属 (表 1),确认化合物 1 合成无误。

化合物 2: 白色粉末; HRESIMS 数据为 m/z: 1 498.670 4 [M-H] (图 4C), 与理论分子量 1 498.671 6 相符合,分子式: C₇₅H₉₇N₁₃O₁₈S。¹H NMR (DMSO- d_6 , 400 MHz)在最低场 $\delta_{\rm H}$ 10.8 ppm 左右为色氨酸上的吲哚氮原子连接活泼氢信号, 在低场区 $\delta_{\rm H}$ 7.6-8.6 ppm 存在 11 个酰氨基活泼氢 信号,与 11 个酰胺键对应(10 个氨基酸和 1 个 SNAC)。在芳香区 δ_H 6.2-7.7 ppm 有 18 个氢信 号, 包含 13 个苯环基团氢信号(1 个单取代苯和 2 个对取代苯中的氢信号)和 5 个吲哚环基团上烯 烃氢信号;另外,还有2个反式双键的特征氢信 号(J=15.8 Hz)。往高场区 δ_H 3.3-4.7 ppm 主要为氨 基酸 α 碳上氢信号,以及苯环对位取代的甲氧基 氢信号(3.58 ppm); $\delta_{\rm H}$ 2.3-3.3 ppm 主要为氨基酸 β 碳上氢信号, $\delta_{\rm H}$ 1.3-2.0 ppm 主要为氨基酸 γ 碳上 氢信号, 高场区 $\delta_{\rm H}$ 有 6 个裂分为双峰的氨基酸上 甲基氢信号,分别为 1.22 (3H)、1.06 (3H)、0.87 (3H) (3个重叠)和 0.80 (3H) ppm, 对应 1个丙氨 酸、1 个苏氨酸和 2 个亮氨酸中的甲基。同样, SNAC 上氢信号表明 1.77 ppm 处单峰为乙酰基中 甲基, 2.84 ppm 和 3.11 ppm 分别为β 和 α 碳 上氢。 将化合物2的氢谱信号进行了归属(表1),确认化 合物2合成无误。

2.3 Skyxy TE 的体外催化

基于质粒 pMCSG7 构建了包含 Skyxy-TE 编码基因的表达质粒 pMCSG7-Skyxy-TE, 经过在 大肠杆菌 BL21 中的诱导表达以及镍离子亲和层 析纯化后,得到了可溶的 Skyxy-TE 蛋白,经 SDS-PAGE 分析纯度高(图 4A)。以固相多肽方 法合成的化合物 1 和 2 作为底物分别进行 Skyxy-TE 体外酶催化实验,通过 HPLC 检测, 发现 2 个底物的反应体系中产生了新的化合物峰 (图 4B),经 HRESIMS 检测为环化产物(图 4C), 而高温变性的 Skyxy-TE 反应体系中未检测到环 化产物(图 4B)。

Position	1	2	3		4	
	$\delta_{ m H} \left(J \text{ in Hz} \right)$	$\delta_{ m H} \left(J ext{ in Hz} ight)$	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	$\delta_{\rm C}$, type	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, type
Cin						
1				166.6, C		166.4, C
2	6.97, d* (16.0)	6.95, d* (15.8)	6.96, d* (15.8)	121.1, CH	6.95, d* (16.8)	121.1, CH
3	7.41, m	7.41, m*	7.54, m*	140.3, CH	7.55, d* (16.1)	140.3, CH
1'				134.5, C		134.6, C
2',6'	7.57, d (7.0)	7.56, d (6.8)	7.53, m*	127.7, CH	7.54, m*	127.7, CH
3',5'	7.44, m	7.44, m	7.41, m*	128.9, CH	7.41, m*	128.9, CH
4'	7.39, m	7.39, m*	7.39, m*	129.8, CH	7.39, m*	129.8, CH
'Thr		o o				
NH	8.06, d [#] (8.5)	8.09, d [#] (8.4)	8.75, s		8.76, s*	
α	4.42, m*	4.46, m*	4.90, m	58.0, CH	4.89, m	57.7, CH
β	4.09, m	4.06, m*	5.09, t (5.6)	69.9, CH	5.07, t (5.8)	69.8, CH
γ	1.08, d (6.2)	1.06, d (6.3)	1.12, d (5.5)	16.5, CH ₃	1.07, d (6.4)	16.5, CH ₃
C=O				171.0, C		171.2, C
Ala	9.10^{-1} $4^{\#}$ (C.0)	0.01 1*# (7.0)	0.45 1		0.45 h	
NH	8.19, d (6.0)	8.21, d* (7.8)	8.45, br s*	50.0 CH	8.45, br s	50.0 CU
a	4.23, t(7.0)	4.27, t(7.2)	4.07, m	50.0, CH	4.00, III	30.0, CH
р С-О	1.25, 0 (7.0)	1.22, d (7.1)	1.24, d (7.5)	171.0, CH ₃	1.24, d (7.2)	$17.0, CH_3$
3 Asp				171.0, C		171.0, C
мн	$7.72 d^{\#}(7.0)$	7.70 br $d^{\#}(6.4)$	781 brs		775 br s*	
a	1.12, u (1.0)	1.70, bi u (0.4)	7.81, 01 S	52.8 CH	1.75, 01 s	50.2 CH
ß	$2.47 \text{ m}^{\text{\#}} \cdot 2.71 \text{ m}^{\text{\#}}$	$2.46 \text{ m}^{\#} \cdot 2.60 \text{ m}^{*}$	$2.69 \text{ m} \cdot 2.77 \text{ m}^{*}$	37.7 CH	2.61 m*: 2.67 m	38.6 CH
γ γ C=0	2.47, 111, 2.71, 111	2.40, m , 2.00, m	2.09, 11, 2.77, 11	170.8 C	2.01, 111, 2.07, 111	170.9 C
7 C=0				170.0, C		1697 C
⁴ Glv				10).7, C		10).7, C
NH	7.82. br $t^{\#}(6.2)$	7.80. br $t^{\#}(5.4)$	7.77. br s		7.78. br s*	
a	3.54. m* [#]	3.41. m* [#] : 3.63. m* [#]	3.40. m*: 3.87. m	41.9. CH ₂	3.36. m: 3.89. m	41.7. CH ₂
C=O	,		····, ,····,	168.7, C	, , ,,	168.7, C
⁵ Phe/Tyr				, .		, -
NH	8.16, d [#] (7.7)	8.16, br d* [#] (7.4)	7.93, br s		7.89, br s	
α	4.61, m	4.55, m	4.49, m*	49.4, CH	4.44, m*	53.1, CH
β	2.89, m* [#] ; 2.93, m [#]	2.76, m [#] ; 2.80, m [#]	2.58, m; 2.75, m*	36.3, CH ₂	2.44, m; 2.61, m*	35.5, CH ₂
1'				137.7, C		127.8, C
2'6'	7.20, m*	7.03, br d (8.4)	7.23, m*	129.3, CH	7.04, d (8.3)	130.2, CH
3'5'	7.19, m*	6.67, d (8.0)	7.15, m*	128.1, CH	6.60, d (8.3)	114.9, CH
4'	7.15, m		7.14, m*	126.4, CH		155.9, CH
C=O				170.8, C		170.9, C
⁶ Pro						
α	4.34, m*	4.31, m	4.18, m*	60.0, CH	4.19, m*	59.9, CH
β	1.69, m; 1.85, m	1.65, m; 1.87, m	1.68, m*; 1.79, m*	28.4, CH ₂	1.71, m; 1.81, m*	28.4, CH ₂
γ	1.72, m; 1.75, m	1.70, m; 1.74, m	1.75, m*; 1.77, m*	24.3, CH ₂	1.79, m*; 1.80, m*	24.3, CH ₂
δ	3.58, m; 3.62, m [#]	3.55, m; 3.63, m* [#]	3.29, m*; 3.56, m*	46.8, CH ₂	3.44, m; 3.63, m	46.9, CH ₂
C=O				171.1, C		170.1, C
						(待续)

表1	化合物1和2的氢谱数据归属以及化合物3和4的氢谱和碳谱数据归属
Table	1 The ¹ H NMR (400 MHz) data of compounds 1 and 2 in DMSO- <i>d</i> ₆ , and the ¹ H NMR (600 MHz) and ¹³ C NMR
(150 M	(Hz) data of compounds 3 and 4 in DMSO-d ₆

	7, CH 9, CH ₂ 2, C 4, CH .8, CH .4, C 7, CH ₃ .1, C
NH 8.24 , $s^{#}$ 8.23 , $s^{#}$ 7.05 , br s^{*} 7.04 , br s^{*} α 4.42 , m* 4.40 , m* 4.50 , m* 53.0 , CH 4.54 , m* 52.7 β 2.55 , m* [#] ; 2.76 , m [#] 2.60 , m* [#] ; 2.65 , m [#] 2.43 , m*; 2.72 , m* 37.2 , CH ₂ 2.44 , m; 2.77 , m 36.9 $1'$ 126.6 , C 128 $2'6'$ 6.68 , d (8.2) 6.62 , d (8.4) 6.40 , br d (6.4) 130.3 , CH 6.36 , d (7.3) 130	7, CH 9, CH ₂ 5.2, C 6.4, CH 6.4, C 7, CH ₃ 6.1, C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7, CH 9, CH ₂ 5.2, C 0.4, CH .8, CH .4, C 7, CH ₃ .1, C
β 2.55, m*#; 2.76, m# 2.60, m*#; 2.65, m# 2.43, m*; 2.72, m* 37.2, CH ₂ 2.44, m; 2.77, m 36.4 1' 126.6, C 128 2'6' 6.68, d (8.2) 6.62, d (8.4) 6.40, br d (6.4) 130.3, CH 6.36, d (7.3) 130	9, CH ₂ 3.2, C 3.4, CH 3.8, CH 3.4, C 7, CH ₃ .1, C
1' 126.6, C 128 2'6' 6.68, d (8.2) 6.62, d (8.4) 6.40, br d (6.4) 130.3, CH 6.36, d (7.3) 130	3.2, C 0.4, CH 0.8, CH 0.4, C 7, CH ₃ 0.1, C
2'6' 6.68, d (8.2) 6.62, d (8.4) 6.40, br d (6.4) 130.3, CH 6.36, d (7.3) 130	0.4, CH 1.8, CH 1.4, C 7, CH ₃ 1.1, C
	2.8, CH 7.4, C 7, CH ₃ 1.1, C
3'5' 6.51, d (7.6) 6.46, d (8.5) 6.29, d (6.4) 114.5, CH 6.21, d (7.1) 112	7.4, C 7, CH ₃ 9.1, C
4' 155.7, C 157	7, CH ₃ .1, C
4'-OCH ₃ 3.58, s 3.52, s 54.).1, C
C=O 170.1, C 170	
⁸ D-Trp	
NH 8.12, $d^{\#}(8.1)$ 8.14, br $d^{*\#}(3.9)$ 8.49, br d (6.5) 8.56, s	
α 4.47, m 4.49, m* 4.47, m* 53.6, CH 4.45, m* 53.	7, CH
β 2.99, m; 3.20, m 2.98, m; 3.20, m 2.94, m; 3.09, m 27.6, CH ₂ 2.95, m; 3.07, m 27.0	5, CH ₂
1-NH 10.82, s 10.83, s 10.83, s 10.86, s	
2 7.20, m* 7.24, m 7.23, m* 124.3, CH 7.27, br s 124	.4, CH
3 109.9, C 109	.9, C
4 127.1, C 127	.1, C
5 7.63, d (8.0) 7.66, d (7.7) 7.67, d (7.8) 118.7, CH 7.69, d (7.8) 118	.9, CH
6 6.99, t* (7.8) 6.99, t* (7.2) 6.97, t* (7.2) 118.2, CH 6.99, t (7.6) 118	.2, CH
7 7.06, t (7.9) 7.07, t (7.2) 7.06, t* (7.4) 120.9, CH 7.08, t (7.3) 120	.9, CH
8 7.31, d (8.0) 7.32, d (8.1) 7.30, d (8.0) 111.3, CH 7.32, d (8.0) 111	.4, CH
9 136.2, C 136	.3, C
C=O 172.3, C 172	.4, C
⁷ Gly	
NH 8.31, br t [#] (5.1) 8.38, br t [#] (4.5) 8.62, s 8.74, s*	
α 3.74, m*" 3.75, m*" 3.53, m*; 4.26, m 41.8, CH ₂ 3.55, m*; 4.22, m* 41.3	3, CH ₂
C=O 168.7, C 169	.7, C
D-Leu $7.07^{\#}(0.2)$ $7.06^{\#}(7.7)$ 0.10^{1}	
NH $1.87, d$ (8.3) $1.80, d$ (1.7) $8.12, dr s$ $8.18, dr s$ a $4.42, m^*$ $4.22, m$ 52.1 CH $4.25, m$ 52.1 CH	
$u = 4.42, m^* = 4.43, m^* = 4.53, m = 52.1, CH = 4.53, m = 52.0$), CH
$p = 1.47, m; 1.30, m = 1.48, m; 1.35, m = 1.58, m; 1.48, m^2 = 40.7, CH_2 = 1.54, m; 1.45, m = 41.0$	J, CH_2
γ 1.00, III 1.00, III 1.00, III 25.0, CH 1.02, III 25. δ 0.87 m* 0.82 d (6 d) 22.0 CH 0.82 d (6 5) 22	7, СП 1. СЧ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1, CH_3$
C=0 172 3 C 172	A C
¹¹ D Len	. 4 , C
NH 8.48 $d^{\#}(7.6)$ 8.40 $d^{\#}(7.0)$ 8.27 hr d (5.2) 8.34 hr s	
$\alpha = \frac{4.34}{10} \text{ m}^{*} = \frac{4.35}{10} \text{ m}^{*} = \frac{4.18}{10} \text{ m}^{*} = \frac{50.2}{10} \text{ CH} = \frac{4.17}{10} \text{ m}^{*} = \frac{50}{10} \text{ m}^{*} = \frac{100}{10} m$	1 CH
β = 1.50 m · 1.60 m = 1.48 m · 1.57 m = 1.50 m * · 1.57 m * 38.1 CH ₂ = 1.50 m · 1.55 m * 38.1	1, CH
γ 1.66 m* 1.60 m* 1.56 m* 24.2 CH 1.55 m* 24.2	2 CH
δ 0.87 m [*] 0.87 m [*] 0.77 hr d (4.4) 22.8 CH ₂ 0.76 d (4.4) 22.5	8 CH2
$0.80, d(6.4)$ $0.80, m^*$ $0.73, d(5.7)$ $20.6, CH_2$ $0.73, d(5.8)$ 20.6	6. CH2
C=0 171.1 C 171	.1. C
SNAC	, e
NH 8.01, t (5.4) 8.01, br t (5.1)	
α -CH ₂ 3.11, m 3.11, m	
β-CH ₂ 2.83, m 2.84, m	
CH ₃ 1.77, s 1.77, s	

Note: *: These signals overlapped with others; [#]: These signals are exchangeable

2.4 化合物 3 和 4 的结构鉴定

催化形成的 2 个产物 3 和 4 为底物类似物 1 和 2 脱去 SNAC 后 C 端亮氨酸羧基和 N 端苏氨酸 羟基脱水形成酯键的环肽,是 Skyllamycin B 类似 物。经过 1D、2D NMR 以及 HRESIMS 等分析,确证了化合物 3 和 4 的化学结构。

化合物 **3**:白色粉末;HRESIMS 数据为 m/z:1 349.620 2 [M-H]⁻(图 4C),与理论分子量 1 349.620 6 相符合;分子式:C₇₀H₈₆N₁₂O₁₆。¹H NMR 所有氨基酸信号基本与化合物 **1** 对应,在最 低场 $\delta_{\rm H}$ 10.8 ppm 左右为色氨酸上的吲哚氮原子连 接活泼氢信号,在低场区 $\delta_{\rm H}$ 7.6-8.6 ppm 存在 10个氨基活泼氢信号,与10个酰胺键对应。在芳 香区 $\delta_{\rm H}$ 6.2-7.7 ppm 有 19 个氢信号,包含 14 个苯 环基团氢信号(2 个单取代苯和 1 个对取代苯中的 氢信号)和 5 个吲哚环氢信号;另外,该区域还有 2 个是反式双键的特征氢信号(*J*=15.8 Hz)。¹H NMR 的高场区信号重叠严重,根据 COSY、 HSQC 和 HMBC 实验对剩余氢信号进行了归属。

¹³C NMR 在低场区 δ_{C} 165–175 ppm 有 13 个羰基碳 信号,对应肽链骨架上的 11 个酰胺基、1 个酯基 以及 1 个 Asp 侧链羧基基团的羰基。在芳香区 δ_{C} 105–158 ppm 有 22 个碳信号,结合 ¹H NMR 确认 的信息,可推测有 12 个碳信号属于苯环,8 个属 于吲哚环,2 个是碳-碳双键的信号。通过 H_γ-¹Thr ($\delta_{\rm H}$ 1.12)和 H_α-¹¹Leu ($\delta_{\rm H}$ 4.18)、H_β-¹Thr ($\delta_{\rm H}$ 5.09)和 H_α-¹¹Leu ($\delta_{\rm H}$ 4.18)、H₃-Cin ($\delta_{\rm H}$ 7.54)和 H_β-¹¹Leu ($\delta_{\rm H}$ 0.77) 均有 NOESY 相关等,可知亮氨酸与苏氨酸相连, 说明化合物 **3** 为环肽。通过 ¹H NMR 和 ¹³C NMR 谱 图的分析(表 1),结合 COSY、HSQC、HMBC 和 NOESY 数据(其 COSY、HMBC 和 NOESY 相关见 图 5),最终确定了化合物 **3** 的结构。

化合物 4: 白色粉末; HRESIMS 数据为 m/z: 1 379.630 9 [M-H]⁻ (图 4C); 与理论分子量 1 379.631 2 相符合; 分子式: C₇₁H₈₈N₁₂O₁₇。¹H NMR 所有氨基酸信号基本与化合物 2 吻合, 在最 低场 $\delta_{\rm H}$ 10.8 ppm 左右为色氨酸上的吲哚氮原子连 接活泼氢信号, 在低场区 $\delta_{\rm H}$ 7.6-8.6 ppm 存在 10 个氨基活泼氢信号, 与10 个酰胺键对应。在芳 香区 $\delta_{\rm H}$ 6.2-7.7 ppm 有 18 个氢信号, 包含 13 个苯 环基团氢信号(1 个单取代苯和 2 个对取代苯中的 氢信号)和 5 个吲哚环氢信号; 另外, 还有 2 个反 式双键的特征氢信号(*J*=16.8 Hz)。¹H NMR 的高 场区信号重叠严重, 结合二维谱图 COSY、 HSQC、HMBC 和 NOESY 对剩余氢信号进行了归

图 5 化合物 3 和 4 的主要 COSY、HMBC 和 NOESY 相关 Figure 5 The key COSY, HMBC and NOESY correlations of compounds 3 and 4

属。¹³C NMR 在低场区 δ_{C} 165–175 ppm 有 13 个羰 基碳信号,对应肽链骨架上的 11 个酰胺基、1 个 酯基以及 1 个 Asp 侧链羧基基团的羰基。在芳香 区 δ_{C} 105–158 ppm 有 22 个碳信号,可推测有 12 个 碳信号属于苯环,8 个属于吲哚环,剩下的 2 个是 碳-碳双键的信号。同样通过 H_β-¹Thr (δ_{H} 5.07)和 H_α-¹¹Leu (δ_{H} 4.17)、H_γ-¹Thr (δ_{H} 1.07)和 H_α-¹¹Leu (δ_{H} 4.17)、H₃-Cin (δ_{H} 7.55)和 H_β-¹¹Leu (δ_{H} 1.50, 1.55)、 H₃-Cin (δ_{H} 7.55)和 H_δ-¹¹Leu (δ_{H} 0.76)均有 NOESY 相关等,可知 C 端亮氨酸与 N 端苏氨酸通过形成 酯键相连,证明化合物 4 为环肽。通过 ¹H NMR 和 ¹³C NMR 归属(表 1),结合 COSY、HSQC、HMBC 和 NOESY 数据(其 COSY、HMBC 和 NOESY 相 关见图 5),最终确定了化合物 4 的结构。

3 讨论与结论

以体外纯化的硫酯酶作为生物催化剂催化化 学合成的线状肽类底物类似物以产生新颖非核糖 体肽的研究已经取得了引人瞩目的成功。在这些 研究中,硫酯酶作为生物催化剂所最需要的特 性——宽泛的底物杂泛性被不断地证实^[22-25]。随 着酶工程的发展,越来越多的学者尝试利用化学-酶联法进行线性多肽体外环化^[26-27]。许多大环抗 生素,包括 Tyocidine A^[20-25]、Gramicidin S^[28]和 Surfactin A^[29]等,其生物合成中硫酯酶功能域对 固相有机合成底物类似物具有广泛的催化活性。 这些研究表明,与化学合成相比,酶催化方法显 示出温和条件下位置选择性的高效合成优势。

本研究中,我们从中国广西斜阳岛海绵中分 离所得链霉菌 *Streptomyces* sp. PKU-MA01239 的 天然产物生物合成基因簇中定位 Skyllamycin B 生 物合成基因簇,找到位于最后一个模块中 C 末端 的 I 型硫酯酶 Skyxy-TE。我们运用固相多肽合成 法合成 Skyxy-TE 的 2 个底物类似物 1 和 2,以化 合物 1 和 2 为底物,纯化 Skyxy-TE 蛋白开展了体 外催化实验,结果表明 Skyxy-TE 能够识别底物类 似物并且形成环化产物。体外催化反应累积制备 所得化合物 3 和 4,其结构经 NMR 和 HRESIMS 分析得以确证,为新的 Skyllamycin 类环肽。此结 果显示尽管底物类似物1和2在多个结构片段上与 原始底物具有差异,但 Skyxy-TE 仍能在体外高效 催化环肽的生成。其表现出的底物杂泛性为将来 进一步开发化学-酶联反应体系以绿色、高效制备 药用功能环肽分子打下了基础。

REFERENCES

- Süssmuth RD, Mainz A. Nonribosomal peptide synthesis-principles and prospects[J]. Angewandte Chemie International Ed in English, 2017, 56(14): 3770-3821
- [2] Pohle S, Appelt C, Roux M, Fiedler HP, Süssmuth RD. Biosynthetic gene cluster of the non-ribosomally synthesized cyclodepsipeptide skyllamycin: deciphering unprecedented ways of unusual hydroxylation reactions[J]. Journal of the American Chemical Society, 2011, 133(16): 6194-6205
- [3] Navarro G, Cheng AT, Peach KC, Bray WM, Bernan VS, Yildiz FH, Linington RG. Image-based 384-well high-throughput screening method for the discovery of skyllamycins A to C as biofilm inhibitors and inducers of biofilm detachment in *Pseudomonas aeruginosa*[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(2): 1092-1099
- [4] Toki S, Agatsuma T, Ochiai K, Saitoh Y, Ando K, Nakanishi S, Lokker NA, Giese NA, Matsuda Y. RP-1776, a novel cyclic peptide produced by *Streptomyces* sp., inhibits the binding of PDGF to the extracellular domain of its receptor[J]. The Journal of Antibiotics, 2001, 54(5): 405-414
- [5] Uhlmann S, Süssmuth RD, Cryle MJ. Cytochrome P450_{sky} interacts directly with the nonribosomal peptide synthetase to generate three amino acid precursors in skyllamycin biosynthesis[J]. ACS Chemical Biology, 2013, 8(11): 2586-2596
- [6] Du LC, Lou LL. PKS and NRPS release mechanisms[J]. Natural Product Reports, 2010, 27(2): 255-278
- [7] Cao SY, Yang YZ, Ng NLJ, Guo ZH. Macrolactonization catalyzed by the terminal thioesterase domain of the nonribosomal peptide synthetase responsible for lichenysin biosynthesis[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15(10): 2595-2599
- [8] Samel SA, Wagner B, Marahiel MA, Essen LO. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide[J]. Journal of Molecular Biology, 2006, 359(4): 876-889
- [9] Kopp F, Grünewald J, Mahlert C, Marahiel MA. Chemoenzymatic design of acidic lipopeptide hybrids: new

insights into the structure-activity relationship of daptomycin and A54145[J]. Biochemistry, 2006, 45(35): 10474-10481

- [10] Ding YS, Rath CM, Bolduc KL, Håkansson K, Sherman DH. Chemoenzymatic synthesis of cryptophycin anticancer agents by an ester bond-forming non-ribosomal peptide synthetase module[J]. Journal of the American Chemical Society, 2011, 133(37): 14492-14495
- [11] Magarvey NA, Beck ZQ, Golakoti T, Ding YS, Huber U, Hemscheidt TK, Abelson D, Moore RE, Sherman DH. Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from *Nostoc* cyanobionts[J]. ACS Chemical Biology, 2006, 1(12): 766-779
- [12] White CJ, Yudin AK. Contemporary strategies for peptide macrocyclization[J]. Nature Chemistry, 2011, 3(7): 509-524
- [13] Wang DX. Solid-Phase Organic Synthesis: Principle and Application Guide[M]. Beijing: Chemical Industry Press, 2004: 91-144 (in Chinese)
 王德心. 固相有机合成原理及应用指南[M]. 北京: 化学 工业出版社, 2004: 91-144
- [14] Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences[J]. Nature Protocols, 2007, 2(12): 3247-3256
- [15] Gui Y, Qiu LQ, Li YH, Li HX, Dong SW. Internal activation of peptidyl prolyl thioesters in native chemical ligation[J]. Journal of the American Chemical Society, 2016, 138(14): 4890-4899
- [16] Schmidt JJ, Khatri Y, Brody SI, Zhu C, Pietraszkiewicz H, Valeriote FA, Sherman DH. A versatile chemoenzymatic synthesis for the discovery of potent cryptophycin analogs[J]. ACS Chemical Biology, 2020, 15(2): 524-532
- [17] Stols L, Gu MY, Dieckman L, Raffen R, Collart FR, Donnelly MI. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site[J]. Protein Expression and Purification, 2002, 25(1): 8-15
- [18] Wang HL, Li Z, Jia RN, Hou Y, Yin J, Bian XY, Li AY, Müller R, Stewart AF, Fu J, et al. RecET direct cloning and Redαβ recombineering of biosynthetic gene clusters, large operons or single genes for heterologous expression[J]. Nature Protocols, 2016, 11(7): 1175-1190
- [19] Geng TT. Discovery of several nonribosomal peptides from

three bacteria strains and initial biosynthetic research[D]. Beijing: Master's Thesis of School of Pharmaceutical Sciences, Peking University, 2019 (in Chinese)

耿彤彤. 三株细菌中非核糖体肽类天然产物的发现和初步生物合成研究[D]. 北京: 北京大学药学院硕士学位论文, 2019

- [20] Kohli RM, Walsh CT, Burkart MD. Biomimetic synthesis and optimization of cyclic peptide antibiotics[J]. Nature, 2002, 418(6898): 658-661
- [21] Kohli RM, Burke MD, Tao JH, Walsh CT. Chemoenzymatic route to macrocyclic hybrid peptide/polyketide-like molecules[J]. Journal of the American Chemical Society, 2003, 125(24): 7160-7161
- [22] Lin HN, Walsh CT. A chemoenzymatic approach to glycopeptide antibiotics[J]. Journal of the American Chemical Society, 2004, 126(43): 13998-14003
- [23] Lin HN, Thayer DA, Wong CH, Walsh CT. Macrolactamization of glycosylated peptide thioesters by the thioesterase domain of tyrocidine synthetase[J]. Chemistry & Biology, 2004, 11(12): 1635-1642
- [24] Kohli RM, Trauger JW, Schwarzer D, Marahiel MA, Walsh CT. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases[J]. Biochemistry, 2001, 40(24): 7099-7108
- [25] Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase[J]. Nature, 2000, 407(6801): 215-218
- [26] Grünewald J, Marahiel MA. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides[J]. Microbiology and Molecular Biology Reviews, 2006, 70(1): 121-146
- [27] Mortison JD, Sherman DH. Frontiers and opportunities in chemoenzymatic synthesis[J]. The Journal of Organic Chemistry, 2010, 75(21): 7041-7051
- [28] Hoyer KM, Mahlert C, Marahiel MA. The iterative gramicidin S thioesterase catalyzes peptide ligation and cyclization[J]. Chemistry & Biology, 2007, 14(1): 13-22
- [29] Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT. Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE[J]. Structure, 2002, 10(3): 301-310