微生物学通报 Microbiology China tongbao@im.ac.cn

Jun. 20, 2018, 45(6): 1171–1179 http://journals.im.ac.cn/wswxtbcn DOI: 10.13344/j.microbiol.china.170701

Tyr78-loop 对鱼腥藻来源苯丙氨酸脱氨酶活性的影响

郭军玲^{1,2} 张帆^{1,2} 黄楠^{1,2} 周丽^{1,2} 周哲敏^{1,2*}
(1. 江南大学生物工程学院 江苏 无锡 214122)
(2. 江南大学工业生物技术教育部重点实验室 江苏 无锡 214122)

摘 要:【背景】MIO (Methylidene-imidazol-5-one)依赖型酶中,催化因子 Tyr 所在 Loop (Tyr78-loop)的灵活性显著影响酶学性质。【目的】探讨 Tyr78-loop 对鱼腥藻来源苯丙氨酸脱氨 酶酶活的影响,以提高其反应活性。【方法】将该酶的 Tyr78-loop 进行分子改造,筛选出酶活提高的突变体,并对突变体的酶学性质进行研究。【结果】突变体 S73N、E95V、E95K 和 S73N/E95K 在 37 ℃、pH 8.5 下比活分别比原酶提高了 34%、30%、18%和 35%。蛋白三维结构模拟推测在突变体 S73N、E95V 和 E95K 中,位于α螺旋与 Tyr78-loop 交界处的 Asn73、Val95 和 Lys95 与附近氨基酸的氢键作用力数目减少,一定程度上增加了 Tyr78-loop 的柔性。【结论】 Ser73 位和 Glu95 位氨基酸的突变增加了 Tyr78-loop 的灵活性,提高了苯丙氨酸脱氨酶的酶活。

关键词:苯丙氨酸脱氨酶,酶活,定点突变,稳定性

Influence of Tyr78-loop on phenylalanine ammonia-lyase from Anabaena variabilis

GUO Jun-Ling^{1,2} ZHANG Fan^{1,2} HUANG Nan^{1,2} ZHOU Li^{1,2} ZHOU Zhe-Min^{1,2*}

 (1. School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China)
 (2. Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China)

Abstract: [Background] Enzymatic property of the MIO-dependent (methylidene-imidazol-5-one) enzyme is significantly affected by the flexibility of the special loop that includes the catalysis Tyr (Tyr78-loop). [Objective] The effect of Tyr78-loop on activity of phenylalanine ammonia-lyase (PAL) from *Anabaena variabilis* was investigated to improve PAL catalytic activity. [Methods] Tyr78-loop was genetically modified. Positive mutants with enhanced activity were selected, followed by characterization. [Results] The specific activities of S73N, E95V, E95K and S73N/E95K mutants were improved by 34%, 30%, 18% and 35%, respectively, compared with that of the wild type at 37 °C and pH 8.5. According to protein structure simulation, the amino acid sites

Foundation items: National Key Research and Development Program of China (2016YFE0127400); Fundamental Research Funds for the Central Universities (JUSRP51713B)

^{*}Corresponding author: Tel: 86-510-85325210; E-mail: zhmzhou@jiangnan.edu.cn

Received: September 06, 2017; **Accepted:** December 06, 2017; **Published online** (www.cnki.net): December 26, 2017 基金项目: 国家重点研发计划项目(2016YFE0127400); 中央高校基本科研业务费专项资金(JUSRP51713B)

^{*}通信作者: Tel: 86-510-85325210; E-mail: zhmzhou@jiangnan.edu.cn

收稿日期: 2017-09-06;接受日期: 2017-12-06;网络首发日期(www.cnki.net): 2017-12-26

Asn73, Val95 and Lys95 in the mutants S73N, E95V and E95K, which located at the junction of α -helix and Tyr78-loop, had fewer hydrogen bonds with the nearby amino acids. This would increase the flexibility of Tyr78-loop and result in enhancement of the enzyme activity. **[Conclusion]** Catalytic activity of AvPAL could be improved by increasing the flexibility of Tyr78-loop through mutation on the Ser73 and Glu95 sites.

Keywords: Phenylalanine ammonia-lyase, Activity, Site-directed mutagenesis, Stability

苯丙氨酸脱氨酶(Phenylalanine ammonia-lyase, PAL, EC: 4.3.1.5)在 pH 8.0-9.0 条件下能催化 L-苯 丙氨酸非氧化脱氨形成反式肉桂酸,在 pH 10.0-11.0 以及浓氨条件下可催化逆向反应^[1]。PAL 可用于工 业生产阿斯巴甜的前体 L-苯丙氨酸^[2]和通过拆分 L,D-苯丙氨酸制备高光学纯度的 D-苯丙氨酸^[3] 在 治疗癌症和苯丙氨酸代谢障碍疾病苯丙酮尿症 (Phenylketonuria, PKU)方面也展示了很好的潜力^[4-6]。 其中,鱼腥藻(Anabaena variabilis)来源的 PAL (AvPAL)稳定性优异,包括热稳定性以及体内抵抗 蛋白酶降解能力和极端肠胃 pH 能力,而且在体内 引起的抗原性低,最具有医药应用的前景^[6-7]。同 时,AvPAL 的底物谱宽,在合成绿色非天然手性 氨基酸方面有较大的应用前景^[8]。然而, AvPAL 酶活显著低于真核生物来源的 PAL,在一定程度 上限制了该酶的应用^[6]。

在 4-Methylideneimidazol-5-one (MIO)依赖型 酶中^[9],催化中心的 Tyr 具有接收底物 L-苯丙氨 酸上的质子推进催化进行的作用,它所在的柔性 区 Tyr-loop 对酶学性质起着相当重要的作用,该 区的柔性在一定程度上直接影响这类酶的脱氨活 性^[6,10-12]。比较 AvPAL (PDB ID: 3CZO)和冬红酵母 (*Rhodotorula toruloides*)来源的 PAL (RtPAL, PDB ID: 1T6J)以及欧芹(*Petroselinum crispum*)来源的 PAL (PcPAL, PDB ID: 1w27)的晶体结构,发现 AvPAL 的 Tyr-loop 比后两者的柔性都要低。与此 同时,AvPAL 的酶活比酵母和植物来源的 PAL 低^[13-15]。另外,研究结果表明^[10-11],通过提高反 应温度以及定点突变等方式提高相应 Tyr-loop的 柔性,可以使苯丙氨酸氨基变位酶(Phenylalanine aminomutase, PAM, MIO 依赖型酶)催化脱氨活性 明显提高。但目前还没有通过改造苯丙氨酸脱氨酶 相应的 Tyr-loop 来改变其催化性质的研究报道。

本研究组在前期研究中获得了鱼腥藻的 AvPAL 基因^[16],在大肠杆菌中实现了高效表达并对其酶 学性质进行了系统的研究。因为研究发现粘红酵母 (*Rhodotorula glutinis*)来源 RgPAL 和玉米(*Zea mays*) 来源 ZmPAL 的 PAL 酶活分别比 AvPAL 高出 1 倍 和 3 倍^[17],本研究通过比对 AvPAL、RgPAL 和 ZmPAL 的 Tyr-loop 氨基酸序列,将 AvPAL 的 Tyr78-loop 进行一系列改造,包括将整个 Tyr78-loop 替换成 RgPAL 的 Tyr-loop,以及分别突 变 RgPAL 和 ZmPAL 的 Tyr-loop 相应氨基酸位点 的定点突变,以提高 AvPAL 的 Tyr-loop 柔性,最 终提高其酶活性并研究突变体的酶学性质。

1 材料与方法

- 1.1 材料
- 1.1.1 菌种、质粒和引物

菌种 Escherichia coli JM109、E. coli BL21(DE3) 购自 Novangen 公司;重组质粒 pET28a(+)-pal 由 本实验室构建并保存。

本文所用引物由生工生物工程(上海)股份有 限公司合成。

1.1.2 培养基

LB 培养基(g/L):胰蛋白胨 10.0,酵母膏 5.0, NaCl 10.0,琼脂粉 20.0;2YT 培养基(g/L):胰蛋 白胨 16.0,酵母膏 10.0,NaCl 10.0,琼脂粉 20.0。 1.1.3 主要试剂和仪器

工具酶、DNA marker 和 Protein marker 购自宝 生物工程(大连)有限公司; 质粒提取试剂盒购自天 根生化科技有限公司; 胶回收试剂盒、PCR 产物 纯化试剂盒及异丙基-β-D-硫代吡喃半乳糖苷 (IPTG)、卡那霉素购自生工生物工程(上海)股份有限公司;酵母提取物、蛋白胨购自 Oxford 公司; 其余试剂均为国产分析纯。

结合缓冲液(mmol/L):Na₂HPO₄ 50、NaH₂PO₄ 50、NaCl 500、Imidazole 20。

AKTA 蛋白纯化系统、HisTrap HP 1 mL 镍柱 和 Superdex 75 10/300GL 凝胶柱均为通用电气医 疗器械集团产品。

1.2 方法

1.2.1 突变体的构建

用软件 Primer 5.0 设计引物(表 1),以重组质 粒 pET28a(+)-pal 为模板进行全质粒 PCR。

PCR 反应体系: 5×PrimeSTAR buffer (5 mmol/L Mg²⁺ plus) 10 μL, dNTP mixture (2.5 mmol/L) 4 μL, 上、下游引物(10 mmol/L)各 1 μL, pET28a(+)-pal 质粒模板(1 ng/μL) 1 μL, PrimeSTAR HS DNA polymerase (2.5 U/μL) 0.5 μL, 超纯水补至 50 μL。

PCR 反应条件: 95 °C 5 min; 95 °C 1 min, 58 °C 30 s, 72 °C 8 min, 25 个循环; 72 °C 10 min;

4	°C	保温。
---	----	-----

将 PCR 产物用胶回收试剂盒纯化后用 Dpn I 消化除去模板。将消化后的质粒转化入 E. coli JM109 感受态细胞,在含有 50 mg/L 卡那霉素的 LB 固体培养基中 37 °C 培养筛选阳性克隆菌株, 并提取质粒转入 E. coli BL21(DE3)感受态细胞。 1.2.2 AvPAL 及其突变体的表达

从平板上挑取单菌落,分别接种至 5 mL 含有 卡那霉素(50 mg/L)的液体 LB 培养基,37 °C、 200 r/min 培养 8–10 h。取 1 mL 种子液接种至 100 mL 含有卡那霉素的 2YT 培养基中,37 °C、200 r/min 培养至菌体 *OD*₆₀₀为 0.8–1.0,加入 IPTG 至终浓度为 0.4 mmol/L,20 °C 诱导表达 16–18 h 后,5 000×g 离心 10 min 收集清洗菌体,并保存于–80 °C 备用。

1.2.3 AvPAL 的纯化

将重组菌体悬浮于 20 mL 结合缓冲液,冰水 浴超声破碎(工作 3 s,间隔 7 s,工作时间 40 min), 13 000×g 离心 25 min 除去不溶性杂质获得粗酶 液,上清用 0.22 μm 滤膜过滤,用 HisTrap HP 的

Table 1 Primers used in this study	
引物名称	序列
Primers name	Sequences $(5' \rightarrow 3')$
	TGTGATTACATTAATAATGCTGTTGAATCTGACAACAGTG
Loop up	TCTACGGTGTCACGACCGGCTTCGGCGGCTCGGCAGACAC
	CCGGACGGAGGACGCGATCTCTGAACTCCAAACCAACTTA
	GAACCAAACTAAGTTGGTTTGGAGTTCAGAGATCGCGTCC
Loop down	CCGTCCGGGTGTCTGCCGAGCCGCCGAAGCCGGTCGTGA
	CACCGTAGACACTGTTGTCAGATTCAACAGCATTATTAAT
S73N up	TACATTAATAATGCTGTTGAAAATGGGGAACCAATT
S73N down	CACTCCATAAATTGGTTCCCCATTTTCAACAGCATT
E75T up	AATAATGCTGTTGAATCTGGGACTCCAATTTATGGA
E75T down	AGATGTCACTCCATAAATTGGAGTCCCAGATTCAAC
P76D up	AATGCTGTTGAATCTGGGGAAGATATTTATGGAGTG
P76D down	ACCAGATGTCACTCCATAAATATCTTCCCCAGATTC
I77V up	GCTGTTGAATCTGGGGAACCAGTTTATGGAGTGACA
I77V down	AAAACCAGATGTCACTCCATAAACTGGTTCCCCAGA
I77S up	GCTGTTGAATCTGGGGAACCATCATATGGAGTGACA
I77S down	AAAACCAGATGTCACTCCATATGATGGTTCCCCAGA
I77A up	GCTGTTGAATCTGGGGAACCAGCATATGGAGTGACA
I77A down	AAAACCAGATGTCACTCCATATGCTGGTTCCCCAG
	(结绩)

表1 本文所用引物

		(续表1)
I77G up	GCTGTTGAATCTGGGGAACCAGGTTATGGAGTGACA	
I77G down	AAAACCAGATGTCACTCCATAACCTGGTTCCCCAGA	
S82T up	GAACCAATTTATGGAGTGACAACTGGTTTTGGCGGT	
S82T down	ATTGGCCATACCGCCAAAACCAGTTGTCACTCCATA	
M87S up	GTGACATCTGGTTTTGGCGGTTCAGCCAATGTTGCC	
M87S down	ACGGGATATGGCAACATTGGCTGAACCGCCAAAACC	
M87T up	GTGACATCTGGTTTTGGCGGTACTGCCAATGTTGCC	
M87T down	ACGGGATATGGCAACATTGGCAGTACCGCCAAAACC	
N89D up	TCTGGTTTTGGCGGTATGGCCGATGTTGCCATATCC	
N89D down	TTGTTCACGGGATATGGCAACATCGGCCATACCGCCA	
N89H up	TCTGGTTTTGGCGGTATGGCCCATGTTGCCATATCC	
N89H down	TTGTTCACGGGATATGGCAACATGGGCCATACCGCCA	
V90T up	GGTTTTGGCGGTATGGCCAATACTGCCATATCCCGT	
V90T down	TGCTTGTTCACGGGATATGGCAGTATTGGCCATACC	
V90R up	GGTTTTGGCGGTATGGCCAATCGTGCCATATCCCGT	
V90R down	TGCTTGTTCACGGGATATGGCACGATTGGCCATACC	
A91R up	TTTGGCGGTATGGCCAATGTTCGTATATCCCGTGAA	
A91R down	AGATGCTTGTTCACGGGATATACGAACATTGGCCAT	
I92T up	GGCGGTATGGCCAATGTTGCCACTTCCCGTGAACAA	
I92T down	TTCAGATGCTTGTTCACGGGAAGTGGCAACATTGGC	
S93E up	GGTATGGCCAATGTTGCCATAGAACGTGAACAAGCA	
S93E down	GAGTTCAGATGCTTGTTCACGTTCTATGGCAACATT	
S93R up	GGTATGGCCAATGTTGCCATACGTCGTGAACAAGCA	
S93R down	GAGTTCAGATGCTTGTTCACGACGTATGGCAACATT	
R94D up	ATGGCCAATGTTGCCATATCCGATGAACAAGCATCT	
R94D down	TTGGAGTTCAGATGCTTGTTCATCGGATATGGCAAC	
R94T up	ATGGCCAATGTTGCCATATCCACTGAACAAGCATCT	
R94T down	TTGGAGTTCAGATGCTTGTTCAGTGGATATGGCAAC	
E95A up	GCCAATGTTGCCATATCCCGTGCACAAGCATCTGAA	
E95A down	GGTTTGGAGTTCAGATGCTTGTGCACGGGATATGGC	
E95K up	GCCAATGTTGCCATATCCCGTAAACAAGCATCTGAA	
E95K down	GGTTTGGAGTTCAGATGCTTGTTTACGGGATATGGC	
E95V up	GCCAATGTTGCCATATCCCGTGTTCAAGCATCTGAA	
E95V down	GGTTTGGAGTTCAGATGCTTGAACACGGGATATGGC	
E95G up	GCCAATGTTGCCATATCCCGTGGTCAAGCATCTGAA	
E95G down	GGTTTGGAGTTCAGATGCTTGACCACGGGATATGGC	
Q96I up	AATGTTGCCATATCCCGTGAAATTGCATCTGAACTC	
Q96I down	GTTGGTTTGGAGTTCAGATGCAATTTCACGGGATATG	
Q96E up	AATGTTGCCATATCCCGTGAAGAAGCATCTGAACTC	
Q96E down	GTTGGTTTGGAGTTCAGATGCTTCTTCACGGGATATG	
A97S up	GTTGCCATATCCCGTGAACAATCATCTGAACTCCAA	
A97S down	TAAGTTGGTTTGGAGTTCAGATGATTGTTCACGGGA	
A97G up	GTTGCCATATCCCGTGAACAAGGTTCTGAACTCCAA	
A97G down	TAAGTTGGTTTGGAGTTCAGAACCTTGTTCACGGGA	

1 mL 镍柱对粗酶液进行纯化。用 10 倍柱体积的结 合缓冲溶液平衡镍柱,用 20 倍柱体积的结合缓冲 液洗去非特异性吸附的蛋白,分别用 8 倍柱体积的 100 mmol/L 和 300 mmol/L 咪唑分别洗脱杂蛋白和 目的蛋白,将目的蛋白进行透析除盐,最后收集样 品用 SDS-PAGE 分析鉴定,并用 Bradford 方法^[18] 测定蛋白浓度。

1.2.4 AvPAL 酶活测定

将 3 μg 纯酶加入总反应体系为 400 μL 的含底 物 L-Phe 终浓度为 10 mmol/L 的 100 mmol/L pH 7.5 Tris-HCl 缓冲液中 ,37 °C 反应 20 min ,加入 400 μL 甲醇终止反应。用分光光度计在 290 nm 下测定吸 光值 ,并通过标准曲线确定生成肉桂酸的量 ,计算 PAL 酶活。

酶活定义:每分钟催化生成 1 μmol 反式肉桂酸所需要的 PAL 量定义为 1 U。

1.2.5 最适反应 pH 以及 pH 稳定性测定

最适反应 pH 的测定:在总反应体系为 400 μL 的不同 pH 缓冲液中加入 3 μg 纯化后的酶,加底物 L-苯丙氨酸至 10 mmol/L,在 37 °C 反应 20 min, 确定相应酶活,作出 pH-酶活曲线,得到最适 pH。 不同 pH 缓冲溶液分别是:pH 6.0-7.0 的 100 mmol/L KH₂CO₃-K₂HCO₃缓冲液和 pH 7.0-9.5 的 100 mmol/L Tris-HCl 缓冲液。

pH 稳定性的测定:将野生酶和突变体在不同 pH 缓冲溶液中 37 ℃ 保存 12 h 后 在 37 ℃、pH 8.5 下测定残留酶活。

1.2.6 最适反应温度以及热稳定性测定

最适反应温度的测定:测定纯酶在 30、35、 40、45、50、55、60及 65°C下的酶活,确定最 适反应温度。

热稳定性的测定:将野生酶和 E75L 于 70 ℃ 保温,适时取样,测定残留酶活。

1.2.7 动力学参数测定

在总反应体系为 200 μL 的含有不同底物浓度 (0.01-0.03 mmol/L L-苯丙氨酸)的 pH 8.5 Tris-HCl 缓冲液中加入 0.5 μg 纯酶 ,在 37 °C 利用酶标仪连 续 12 min 监测生成的肉桂酸量。利用软件 GraphPad Prism 5.0 进行非线性拟合 ,计算动力学参数(*K*_m, *k*_{cat})。 **1.2.8** 突变酶的结构分析

以 AvPAL (PDB ID 3CZO)为模板 利用 SWISS-MODEL 对突变酶进行同源建模,利用 Discovery studio 2.0 软件对蛋白质的三级结构进行分析。

2 结果与分析

2.1 AvPAL 基因突变位点的选择及突变子筛选

由于 RgPAL 的酶活显著高于 AvPAL^[17],将 AvPAL 的 Tyr78-loop (73-97 氨基酸)替换成 RgPAL 的 Tyr-loop (105-127 氨基酸)编码基因(图 1)。

进一步将 AvPAL、RgPAL 和 ZmPAL 相应的 Loop 序列进行比对(图 1)。结果表明, AvPAL 的 78-85 位(除了 Ser82)均为保守氨基酸,而 Loop 两端的氨基酸序列不保守。将 AvPAL 上这些不保 守位点突变为 RgPAL 或 ZmPAL 上相应的氨基酸。 此外, AvPAL 的 Ile77 和 Glu95 对应于 RgPAL 中 相应位点处为空间位阻较小的 Val 和 Ala,空间位 阻小则多肽链可能灵活性更高,因此进一步将 AvPAL 的 Ile77 和 Glu95 分别突变为空间位阻较小 的 Gly、Ala 或 Val,构建了 I77G、I77A、E95G 以 及 E95V 突变体。

AvPAL(73-97)	S	G	Е	Р	Ι	Y	G	V	Т	S	G	F	G	G	М	A	Ν	V	А	Ι	S	R	Е	Q	А
RgPAL(105-127)	Ν	s	_	_	V	Y	G	V	Т	Т	G	F	G	G	S	A	D	Т	R	Т	E	D	А	I	S
ZmPAL(103-125)	Ν	G	Т	D	S	Y	G	V	Т	Т	G	F	G	Α	Т	S	Н	R	_	_	R	Т	Κ	Е	G

图 1 PAL 的 Tyr-loop 氨基酸序列比对

Figure 1 Alignment of amino acid sequences of the Tyr-loop of PALs

注:红框氨基酸为 Tyr 催化因子;黑框氨基酸不被替换.

Note: The amino acids of red box is Tyr catalytic factor; The amino acids of black box is not be replaced.

初步测定突变酶粗酶液相对酶活的结果表明, AvPAL 整个 Loop 替换后, 酶活几乎完全丧失。根 据反应机理, Tyr78 为催化因子, 整个 Tyr78-loop 替换后可能造成了空间结构的紊乱,使得 Tyr78 在 催化过程中不能发挥其应有的接受底物上的一个 质子促进催化反应的路易斯碱作用,从而使该突变 体失去 PAL 酶活性。

将 Tyr78-loop 上的氨基酸一一突变后,发现 大部分突变体保持酶活(图 2),特别是两端氨基酸 突变后保持的酶活较高,选择粗酶液酶活保持在 原酶酶活 80%以上的突变体进行纯化,进一步测 定突变体 S73N、I77G、R94D、R94T、E95A、 E95K、E95V、E95G、Q96I、Q96E、A97S 和 A97G 的纯酶酶活(图 3)。如图 3 所示,S73N、E95V 和 E95K 的纯酶酶活明显提高,对 S73N、E95V 和 E95K 进行组合突变构建的突变体 S73N/E95V 和 S73N/E95K 其相应纯酶的比活都有所提高 (图 3)。在 37 °C、pH 8.5 条件下,比活提高最明 显的4 个突变体 S73N、E95V、E95K和 S73N/E95K 的酶活分别由原酶的 1.57 U/mg 提高到了 2.11、 2.04、1.85 和 2.12 U/mg,后续对这 4 个突变体展 开研究。

2.2 突变酶的酶学性质

2.2.1 突变酶的最适反应温度及热稳定性

为了测定突变酶的最适反应温度,在 pH 8.5 的条件下,分别测定其在不同温度下(35-65°C)的 酶活。如图 4 所示,野生酶和 S73N 均在 50°C 时 达到最高酶活,E95V 和 E95K 在 45°C 时达到最 高酶活,组合突变体 S73N/E95K 的最适反应温度 较原酶降低 10-40°C。与野生酶相比,突变体普 遍在较低温度下就能达到高酶活,说明 Tyr78-loop 在较低温度下已经具有一定的灵活度。该结果与 Chesters 等^[11]报道的在一定温度范围内,MIO 依赖 型酶随温度的升高 Tyr-loop 柔性增强、酶活提高的 现象相一致。

为了确定各酶的热稳定性,将稀释至相同浓度 的酶液保存于 70°C中,适时取样,测定残留酶活。 从图 5 可以看出,相对于野生酶,S73N、E95V、 E95K 以及组合突变 S73N/E95K 的热稳定性均有 下降,半衰期由 120 min 分别降至了 98、56、72 和 56 min。虽然 AvPAL 突变体的热稳定性有所降 低,但是仍显著高于 RgPAL 的稳定性(RgPAL 在 60°C 处理 20 min 仅保持 10%的酶活)^[15]。

图 4 突变酶的最适反应温度

图 5 突变酶的热稳定性 Figure 5 Thermal stability of mutant enzymes

2.2.2 突变酶的最适反应 pH 及 pH 稳定性

S73N、E95V、E95K 以及组合突变体 S73N/E95K 的 pH-活力曲线如图 6 所示。S73N/E95K 的最适反 应 pH 向酸性范围偏移了 0.5 个单位至 8.0 ,其他突 变体的最适 pH 均未发生改变 , 但 E95V 和 E95K 在 pH 大于 8.5 时酶活急剧下降 , 说明 Glu95 突变 体的活性对碱性 pH 比较敏感。

在 37 °C下,用不同 pH 值的缓冲液(6.5-9.5) 分别处理 S73N、E95V、E95K 以及组合突变体 S73N/E95K 12 h 后测定酶活。结果如图 7 所示, 野生酶在 pH 6.5-9.5 条件下处理 12 h 后,野生酶 均维持在 80%以上,突变体 E95V 保持了野生酶较 优异的 pH 稳定性,而其他突变体的 pH 稳定性均 有一定程度的降低,其中 E95K 在酸性环境中的稳 定性以及 S73N 在碱性环境中的稳定性下降明显。 Loop 交接处的 Ser73 和 Glu95 都属于表面氨基酸 且位于活性中心周围,当把 Ser73 突变成 Asn73 时,局部疏水性减弱,推测活性中心附近表面区域 疏水性的减弱使得蛋白更易受到周边不良环境的 影响;同理,E95K 的 pH 稳定性有所降低,而 E95V 保持了较好的稳定性^[19]。

2.2.3 突变酶的动力学参数

在 37 °C 下,以不同浓度的 L-苯丙氨酸为底物 测定突变酶的动力学参数。如表 2 所示,与原始酶 相比,S73N 和 S73N/E95K 的 K_m 几乎没有改变, 但它们的 k_{cat} 分别提高了 26.7%和 45.3%,最终催 化效率 k_{cat}/K_m 分别提高了 16.4%和 27.2%。突变体 E95V 和 E95K 的 K_m 分别提高了 57.1%和 35.0%, 说明底物与酶的亲和性降低,而 k_{cat} 却分别比突变 前提高了 93.9%和 61.4%,在一定程度上抵消了底 物与酶对催化效率 k_{cat}/K_m 的影响,最终催化效率 分别比原酶增大了 23.4%和 7.0%。

2.3 突变酶的结构分析

同源建模发现,在一定程度上,这4个突变体 的 Tyr78-loop 柔性比原酶要大,主要由于 Loop 两端的氨基酸与附近氨基酸的成键情况发生了改 变。如图 8A、B 所示,在 AvPAL 原酶中, Ser73 与 Asn69 形成 2 对极性作用力, 突变后 Asn73 只 与 Asn69 形成 1 对作用力, 73 位氨基酸刚好位于 Loop 与 α 螺旋的交接处,其与附近氨基酸作用力 的改变使得 Loop 灵活性得到增加,甚至进一步带 动了附近氨基酸的运动。同理,如图 8C、D 所示, 在 AvPAL 原酶中, Glu95 与 Ser93、Gln96 共形成 了 3 对作用力, 而当其突变成 Val 或是 Lys 后, 整 个氨基酸并不与附近任何氨基酸成键,使得 Loop 末端的结构更加不稳定,柔性增加。Tyr78-loop灵 活性的提高与其酶活性的提升(表 2)相对应,该结 果也与文献[10-11]的报道结果相一致。同时,Loop 柔性的增加在一定程度上也使得 Tyr78 (路易斯碱) 更容易随温度的升高而挣脱有效的空间位置 , 即蛋 白的最适反应温度及热稳定性都有所降低(图 4、5)。

表 2 突变酶动力学参数

Table 2 Kinetic parameters of mutant enzymes

酶 Enzyme	$K_{\rm m} ({\rm mmol/L})$	$k_{\rm cat}~({\rm s}^{-1})$	$k_{\rm cat}/K_{\rm m}$ ((mmol·s) ⁻¹)				
WT	0.070 ± 0.006	1.650 ± 0.12	23.57				
E95V	0.110 ± 0.009	3.201 ± 0.14	29.10				
E95K	0.105 ± 0.010	2.663 ± 0.10	25.24				
S73N	0.076 ± 0.008	2.091 ± 0.09	27.44				
S73N/E95K	0.080 ± 0.006	2.398 ± 0.13	29.98				

图 8 WT (A)、S73N (B) 以及 WT (C)、E95V (D)三维结 构模拟

Figure 8 Simulated three-dimension structure of WT (A), S73N (B), WT (C) and E95V (D)

3 讨论与结论

现代工业 PAL 生产中应用较广泛的是真核生物 粘红酵母来源的 RgPAL 和冬红酵母来源的 RtPAL, 但是其稳定性较原核生物来源的 PAL 差^[16]。原核生 物鱼腥藻来源的 AvPAL 稳定性等性能突出^[6,20-23], 然而酶活性较真核生物来源的 PAL 低,一定程度 上限制了其应用。

本研究将 AvPAL 的 Tyr78-loop 进行定点突变, 分别突变为 RgPAL 和 ZmPAL 的 Tyr-loop 相应的 氨基酸序列^[17]。结果表明,相较于 Tyr78-loop 上 的氨基酸残基,替换位于 Tyr78-loop 两端的 Ser73 位、Glu95 位氨基酸可更有效地提高酶活(表 2)。 这可能是因为位于 Loop 两端的氨基酸可影响整个 Loop 的摆动,能更有效地提高 Loop 的灵活性;而 Loop 上的氨基酸由于与 Tyr78 催化中心距离过近, 其替换多导致酶活的降低甚至丧失。该结果为蛋白 质 Loop 灵活性的改造以及 MIO 依赖型酶活性的 改造提供了参考。

通过蛋白三级结构模拟发现,AvPAL的S733N 和E95K 突变均使Tyr78-loop的束缚力减少而灵活 性增强(图 8),导致S733N/E95K 突变体的最适反 应温度降至 40 °C 左右(图 4),更接近人体温度 (37 °C),更符合医药领域应用的需求。同时, Tyr78-loop 灵活性的提高导致突变酶对热的耐受

性降低(图 5),这也与 PAL 野生型酶中 Tyr-loop 灵活性与其热稳定性呈反相关的现象相一致。有研究表明,与 AvPAL 相比 RgPAL 和 ZmPAL 的 Tyr-loop 具有较高灵活性,而其热稳定性低于 AvPAL^[13-15]。

此外,本实验室还系统改造了 AvPAL 活性中 心 Tyr78 附近蛋白表面的氨基酸,成功将 AvPAL 的最适反应 pH 由 8.5 降至 7.5,且酶活性比原酶提 高了 30%,热稳定性也显著提高^[16,24]。将这些突 变位点与本研究结果进行组合,有望进一步改善 AvPAL 的性质,使其更适用于医药应用。

REFERENCES

- MacDonald MJ, D'Cunha GB. A modern view of phenylalanine ammonia lyase[J]. Biochemistry and Cell Biology, 2007, 85(3): 273-282
- [2] Miao YY, Liu CJ, Yang SK, et al. Core cDNA cloning and structural analysis of phenylalanine ammonia-lyase of *Rhodotorula glutinis* CIBAS A 1401[J]. Chinese Journal of Applied Environmental Biology, 2005, 11(6): 694-698 (in Chinese) 缪元颖,刘成君,杨顺楷,等.粘红酵母(*Rhodotorula glutinis* CIBAS A 1401)苯丙氨酸解氨酶 cDNA 核心序列的克隆与分析[J]. 应用与环境生物学报, 2005, 11(6): 694-698
- [3] Huang JP, Yin RC, Zhang PP, et al. Method for manufacturing D-phenylalanine by Bio-enzyme asymmetric transformation: China, CN101671716[P]. 2010-03-17 (in Chinese)
 黄建坡,尹若春,张萍萍,等. 生物酶不对称转化生产 D-苯

丙氨酸的方法:中国, CN101671716[P]. 2010-03-17

- [4] Babich OO, Pokrovsky VS, Anisimova NY, et al. Recombinant L-phenylalanine ammonia lyase from *Rhodosporidium toruloides* as a potential anticancer agent[J]. Biotechnology and Applied Biochemistry, 2013, 60(3): 316-322
- [5] Sarkissian CN, Gámez A, Wang L, et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20894-20899
- [6] Wang L, Gamez A, Archer H, et al. Structural and biochemical characterization of the therapeutic *Anabaena variabilis* phenylalanine ammonia lyase[J]. Journal of Molecular Biology, 2008, 380(4): 623-635
- [7] Kong JQ. ChemInform abstract: phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering[J]. ChemInform, 2015, 46(37): 62587-62603
- [8] Parmeggiani F, Lovelock SL, Weise NJ, et al. Synthesis of D-and L-phenylalanine derivatives by phenylalanine ammonia lyases: a multienzymatic cascade process[J]. Angewandte Chemie International Edition, 2015, 54(15): 4608-4611
- [9] Cooke HA, Christianson CV, Bruner SD. Structure and chemistry of 4-methylideneimidazole-5-one containing enzymes[J]. Current Opinion in Chemical Biology, 2009, 13(4): 460-468
- [10] Bartsch S, Wybenga GG, Jansen M, et al. Redesign of a

phenylalanine aminomutase into a phenylalanine ammonia lyase[J]. ChemCatChem, 2013, 5(7): 1797-1802

- [11] Chesters C, Wilding M, Goodall M, et al. Thermal bifunctionality of bacterial phenylalanine aminomutase and ammonia lyase enzymes[J]. Angewandte Chemie International Edition, 2012, 51(18): 4344-4348
- [12] Pilbák S, Tomin A, Rétey J, et al. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases[J]. The FEBS Journal, 2006, 273(5): 1004-1019
- [13] Moffitt MC, Louie GV, Bowman ME, et al. Discovery of two cyanobacterial phenylalanine ammonia lyases: kinetic and structural characterization[J]. Biochemistry, 2007, 46(4): 1004-1012
- [14] Ritter H, Schulz GE. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase[J]. The Plant Cell, 2004, 16(12): 3426-3436
- [15] Zhu LB, Cui WJ, Fang YQ, et al. Cloning, expression and characterization of phenylalanine ammonia-lyase from *Rhodotorula glutinis*[J]. Biotechnology Letters, 2013, 35(5): 751-756
- [16] Huang N, Zhu LB, Zhou L, et al. Gene cloning and expression of phenylalanine ammonia lyase from *Anabaena variabilis* and modification of the optimal reaction pH[J]. Microbiology China, 2015, 42(7): 1208-1215 (in Chinese)
 黄楠,朱龙宝,周丽,等. 鱼腥藻苯丙氨酸脱氨酶的基因克

隆、表达及最适反应 pH 改造[J]. 微生物学通报, 2015, 42(7): 1208-1215

- [17] Zang Y, Jiang T, Cong Y, et al. Molecular characterization of a recombinant Zea mays phenylalanine ammonia-Lyase (ZmPAL₂) and its application in *trans*-cinnamic acid production from L-phenylalanine[J]. Applied Biochemistry and Biotechnology, 2015, 176(3): 924-937
- [18] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254
- [19] Martin A, Sieber V, Schmid FX. *In-vitro* selection of highly stabilized protein variants with optimized surface[J]. Journal of Molecular Biology, 2001, 309(3): 717-726
- [20] Kang TS, Wang L, Sarkissian CN, et al. Converting an injectable protein therapeutic into an oral form: phenylalanine ammonia lyase for phenylketonuria[J]. Molecular Genetics and Metabolism, 2010, 99(1): 4-9
- [21] Heberling MM, Wu B, Bartsch S, et al. Priming ammonia lyases and aminomutases for industrial and therapeutic applications[J]. Current Opinion in Chemical Biology, 2013, 17(2): 250-260
- [22] Bartsch S, Bornscheuer UT. Mutational analysis of phenylalanine ammonia lyase to improve reactions rates for various substrates[J]. Protein Engineering, Design and Selection, 2010, 23(12): 929-933
- [23] Renard G, Guilleux JC, Bore C, et al. Synthesis of L-phenylalanine analogs by *Rhodotorula glutinis*. Bioconversion of cinnamic acids derivatives[J]. Biotechnology Letters, 1992, 14(8): 673-678
- [24] Zhang F, Huang N, Zhou L, et al. Modulating the pH activity profiles of phenylalanine ammonia lyase from *Anabaena variabilis* by modification of center-near surface residues[J]. Applied Biochemistry and Biotechnology, 2017, 183(3): 699-711, DOI: 10.1007/s12010-017-2458-8