微生物学通报 Microbiology China tongbao@im.ac.cn

研宫报

Jul. 20, 2017, 44(7): 1602–1612 http://journals.im.ac.cn/wswxtbcn DOI: 10.13344/j.microbiol.china.170164

高通量测序解析多环芳烃污染盐碱土壤翅碱蓬根际 微生物群落多样性

李志杰¹ 郭长城² 石杰¹ 林匡飞¹ 曹国民¹ 崔长征^{1*} (1. 华东理工大学资源与环境工程学院 国家环境保护化工过程环境风险评价与控制重点实验室 上海 200237) (2. 天津师范大学 水环境与水资源重点实验室 天津 300387)

摘 要:【目的】以多环芳烃(PAHs)污染盐碱土壤为对象,分析比较翅碱蓬根际与非根际土壤细 菌群落多样性,为植物-微生物联合修复 PAHs 污染盐碱土壤提供依据。【方法】在胜利油田油井 附近采集翅碱蓬根际土壤和无翅碱蓬生长区域的裸地表层土壤,基于高通量测序技术分析样品中 微生物群落结构,并进一步运用 Real-time PCR 解析土壤中 PAHs 双加氧酶基因丰度。【结果】翅 碱蓬根际土壤盐含量为 22.51 g/kg,明显低于裸地土壤的 40.03 g/kg,土壤 pH 值差别不大,分别 为 8.20 和 8.22; 根际土壤有机质和总氮含量分别为 24.41 g/kg 和 1.59 g/kg, C/N 值为 15, 裸地 土壤有机质和总氮含量分别为 18.80 g/kg 和 0.71 g/kg, C/N 值为 26; 高通量测序得到根际和裸 地土壤样品优质序列分别为 53 854 条和 30 312 条,在 97%相似水平下,根际土壤样品所得 OTU 数、Chao 1 指数和 ACE 指数分别为 5 934、11 461 和 15 555,分别高于裸地土壤对应指数的值 (4 262、8 262、11 186), 序列分析结果显示, 根际土壤包含细菌 32 门 758 属, 多于裸地土样 28 门 676 属,翅碱蓬根际土壤群落结构多样性均高于裸地土壤; PAHs 污染盐碱土壤中存在丰富 的微生物资源,有 Thioalkalispira、Halothiobacillus、Thiohalophilus 等多种嗜盐碱或耐盐碱微生 物,并在根际土壤中检测到了 PAHs 双加氧酶基因(PAH-RHD_a)。【结论】Thioalkalispira、 Halothiobacillus、Thiohalophilus 等嗜盐碱或耐盐碱微生物是胜利油田 PAHs 污染盐碱土壤中的优 势菌属; 翅碱蓬能有效降低根际土壤盐含量并改善 C/N 值,增加微生物群落结构多样性,提高 PAHs 关键功能基因的丰度,有助于促进嗜盐碱 PAHs 降解微生物在 PAHs 污染盐碱土壤的生物 修复中发挥作用。

关键词:盐碱土壤,多环芳烃,生物修复,翅碱蓬,细菌群落

Foundation item: National Natural Science Foundation of China (No. 41301329); Shanghai Municipal Science and Technology Commission (No. 13ZR1410900)

*Corresponding author: Tel: 86-21-64253988; E-mail: cuichangzheng@ecust.edu.cn

Received: February 28, 2017; **Accepted:** May 23, 2017; **Published online** (www.cnki.net): June 02, 2017 基金项目: 国家自然科学基金项目(No. 41301329); 上海自然科学基金项目(No. 13ZR1410900)

*通讯作者: Tel: 86-21-64253988; E-mail: cuichangzheng@ecust.edu.cn

收稿日期: 2017-02-28; 接受日期: 2017-05-23; 优先数字出版日期(www.cnki.net): 2017-06-02

Diversity of bacterial community in *Suaeda* roots rhizosphere growth in PAHs-contaminated saline soil estimated by high throughput sequencing method

LI Zhi-Jie¹ GUO Chang-Cheng² SHI Jie¹ LIN Kuang-Fei¹ CAO Guo-Min¹ CUI Chang-Zheng^{1*}

(1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology,

Shanghai 200237, China)

(2. Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin 300387, China)

Abstract: [Objective] Analysis and comparison of the bacterial community diversity in Suaeda roots rhizosphere and non-rhizosphere polycyclic aromatic hydrocarbons (PAHs) contaminated saline soil to provide the basis for plant-microbial remediation of PAHs contaminated saline soil. [Methods] Soil samples were collected from Suaeda roots rhizosphere and non rhizosphere at an oil well site in Shengli oil field. Bacterial community structures were analyzed by high throughput sequencing, and further the abundance of PAH-ring hydroxylating dioxygenase (PAH-RHD_{α}) genes in soil was detected by Real-time PCR. [Results] The salt content of *Suaeda* roots rhizosphere soil is 22.51 g/kg, which is significantly lower than the salt content (40.03 g/kg) in non rhizosphere soil. The pH of rhizosphere and non-rhizosphere soil were basically the same, which were 8.20 and 8.22. The organic matter content and total nitrogen content of rhizosphere soil is 24.41 g/kg and 1.59 g/kg, respectively, which made C/N 15. These contents of non rhizosphere soil are 18.80 g/kg and 0.71 g/kg, respectively, which made C/N 26. The bacterial communities were analyzed and at least 53 854 and 30 312 sequencing were obtained for rhizosphere and non-rhizosphere soil samples. At 97% similarity level, the OTU number, Chao 1 index and ACE index are 5 934, 11 461 and 15 555 respectively in rhizosphere soil sample, which are higher than the index values in non-rhizosphere soil (4 262, 8 262 and 11 186). The rhizosphere soil contains 32 phyla and 758 genera of bacteria, more than those in the bare soil (28 phyla and 676 genera). Bacteria abundance and diversity of Suaeda roots rhizosphere soil were higher than that of the non-rhizosphere soil. There are rich resources of haloalkaliphilic microorganisms in PAHs-contaminated saline alkali soil, such as Thioalkalispira, Halothiobacillus, Thiohalophilus, and the PAH-RHD_{α} genes were detected in the rhizosphere soil. [Conclusion] Haloalkaliphilic bacteria such as Thioalkalispira, Halothiobacillus, and Thiohalophilus were the dominant microorganism in PAHs-contaminated saline alkali soil. Suaeda can reduce the salt content and improve the C/N value of rhizosphere soil effectively, simultaneously increase the diversity of microbial communities structure and the abundance of PAH-RHD_{α} genes. Therefore, *Suaeda* was beneficial to promote halophilic PAHs degrading microorganisms play a role in bioremediation of PAHs-contaminated saline-alkali soil.

Keywords: Saline soil, PAHs, Bioremediation, Suaeda, Bacterial community

多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)是一类广泛存在于环境中的具有"三致"效应 的持久性有机污染物,研究表明,土壤至少承担 了 90% PAHs 污染^[1]。其中,采油区原油污染导致 的土壤 PAHs 污染存在浓度高、分布广等特点,其 潜在风险备受关注^[2-3]。

生物修复技术因其成本低、条件温和、二次 污染效应小等优点,是最有潜力的土壤污染治理 技术^[4]。然而,研究表明盐碱化和 PAHs 污染的双 重胁迫改变了土壤理化性质、微生物群落结构及多 样性,导致非嗜盐的 PAHs 高效降解菌难以在盐碱 化 PAHs 污染土壤修复中发挥有效作用^[5-6]。翅碱蓬 是滨海盐碱地和河口地区常见的植物,已用于研究 海滨湿地保护和盐碱土生态修复^[7]。有研究表明, 翅碱蓬对盐碱化土壤有良好的适应能力,同时能富 集土壤中 PAHs^[8]。另外,植物根际是土壤-植物-根

际微生物相互作用的重要区域,根际促生菌、PAHs 降解菌和植物之间良好的平衡状态能有效提高土 壤修复效率^[9]。近年来已有报道筛选出了能在盐碱 条件下降解 PAHs 的细菌,如 Ochrobactrum sp. VA1^[10]、Martelella sp. AD-3^[11]、Planococcus sp. B-1^[12]等。上述微生物资源的不断发现和研究,提高了运用生物修复方法治理 PAHs 污染盐碱土壤的 可行性。因此,探究 PAHs 污染盐碱土壤的翅碱蓬 根际细菌多样性、群落结构及其相互作用关系,对 PAHs 污染土壤的植物-微生物联合修复研究和实 践,具有重要的现实意义,然而目前鲜有相关报道。

传统的富集培养和平板培养方法所能分离获 得的土壤微生物不超过总数的 1%,大部分细菌无 法培养鉴别。通过现代生物技术提取并分析 DNA, 如高通量测序、PCR-DGGE 等技术,能更准确地 反映微生物群落结构,已被广泛应用于环境微生 物相关研究。细菌降解 PAHs 主要通过 PAHs 起始 双加氧酶作用于苯环,在苯环上加入两个氧原子 后逐渐开环降解,该步骤是 PAHs 降解的限速步 骤。PAHs 起始双加氧酶是由多个亚基组成多聚体 蛋白质,其中α亚基(RHD_α)相对保守,通常采用实 时荧光定量 PCR (Real-time PCR, RT-PCR)测定该 功能基因的含量来反映功能基因的丰度^[13]。

本研究以胜利油田油井周边 PAHs 污染土壤为 研究对象,分别采集翅碱蓬生长区域和无翅碱蓬 生长区域污染土壤样品,在分析比较其土壤含盐 量及其他理化性质的基础上,利用高通量测序技 术对不同土壤中的微生物群落结构进行分析,鉴 别盐碱化 PAHs 污染土壤中的优势菌群,分析翅碱 蓬和根际微生物之间的相互作用关系,采用实时 荧光定量 PCR 测定并比较不同土壤中 PAHs 双加氧 酶基因的含量,为植物-微生物联合修复盐碱化 PAHs 污染土壤提供依据。

1 材料与方法

1.1 土壤样品采集

供试土样于 2015 年 10 月采自胜利油田的油井 周围(37°26′56″N, 118°22′37″E),分别选择距井口 5 m 处的碱蓬生长区域和无碱蓬生长区域的土壤 进行样品采集,所选的不同采样区域中心相距 30-50 cm。采集表层(0-20 cm)土壤作为样品, 每个区域采集3个平行样,将其充分混匀作为一个 样品,编号分别为样品1(根际土壤)和样品2(裸地 土壤)。其中,碱蓬根际土壤采集时将根系挖出, 轻轻抖落根系外围的大土块,只收集附着在根系 上的土壤。样品采集后分成两部分,一部分4℃ 保存用于 PAHs 含量和理化性质分析,另一部分 -20℃保存用于生物分析。

1.2 主要试剂和仪器

FastDNA[®] Spin Kit for Soil 试剂盒, MP Biomedicals; 2×*Taq* PCR Master Mix、SYBR Premix Ex *Taq*[™] II、pMD18-T 连接试剂盒, 宝生物工程(大 连)有限公司。

Fastprep24 样品均质系统, MP Biomedicals 公司; Bio-Rad IQ5 Real-time PCR Detection System, Bio-Rad 公司。

1.3 土壤 PAHs 含量和理化性质测定

将采集的土壤样品进行处理,经自然风干、研磨过筛(1 mm)后,测定土壤的理化性质和 PAHs 含量^[14]。土壤的含水量、pH、可溶性盐含量、有 机质以及氮磷钾含量等基本理化性质采用标准分 析方法分析^[9]。

1.4 土壤微生物 DNA 提取和高通量测序

根据 FastDNA[®] Spin Kit for Soil 试剂盒的操作步 骤提取土壤微生物总 DNA, MiSeq 高通量测序由生 工生物工程(上海)股份有限公司完成。PCR 所用的引 物为已经融合了 MiSeq 测序平台的 V3-V4 通用引 物,341F引物为: 5'-CCTACGGGNGGCWGCAG-3'; 805R引物为: 5'-GACTACHVGGGTATCTAATCC-3'。

1.5 Real-time PCR 分析

实验所用革兰氏阴性细菌(Gram-negative, GN) 和革兰氏阳性细菌(Gram-positive, GP) PAH-RHD_α 基因引物分别为 PAH-RHD_α GN F/PAH-RHD_α GN R 和 PAH-RHD_α GP F/PAH-RHD_α GP R (GP), 16S rRNA 基因引物为 968F/1401R,各引物序列如表 1 所示。

表 1 引物序列 Table 1 Primer sequences						
引物	序列	目的基因大小	参考文献			
Primer	Sequence $(5' \rightarrow 3')$	Amplicon size (bp)	Reference			
PAH-RHD _{α} GN F	GAGATGCATACCACGTKGGTTGGA	306	[13]			
$PAH\text{-}RHD_{\alpha}GNR$	AGCTGTTGTTCGGGAAGAYWGTGCMGTT					
$PAH\text{-}RHD_{\alpha}GPF$	CGGCGCCGACAAYTTYGTNGG	292				
$PAH\text{-}RHD_{\alpha}GPR$	GGGGAACACGGTGCCRTGDATRAA					
968 F	AACGCGAAGAACCTTAC	433	[15]			
1401 R	CGGTGTGTACAAGACCC					

实验对 GN 和 GP 两种 PAH-RHD_a 基因进行 PCR 退火温度的优化,退火温度范围为 47-58 °C。 根据 Cébron 报道的相关 PCR 程序进行条件的优化 且将最终优化条件用于 RT-PCR^[13]。普通 PCR 反应 体系为(50 µL): $2 \times Taq$ PCR Master Mix 25 µL,模 板 DNA 1 µL,引物 10 µmol/L各 1 µL,补加 ddH₂O 至总体积为 50 µL。RT-PCR 体系为(20 µL): 10 µL SYBR Premix Ex Taq^{TM} II,引物 10 µmol/L各 0.4 µL,DNA 模板 1 µL,加 ddH₂O 至总体积为 20 µL。PCR 反应条件为: 95 °C 5 min; 95 °C 30 s, PAH-RHD_a GN 50 °C 30 s/16S rRNA 55 °C 30 s, 72 °C 30 s, 30 个循环; 72 °C 5 min。RT-PCR 的循 环数为 40。每个样品设 3 个平行。利用 pMD18-T 载 体构建双加氧酶标准质粒和 16S rRNA 标准质粒^[16]。

将双加氧酶标准质粒和 16S rRNA 标准质粒分 别稀释为 $10^{-1}-10^{-8}$ 梯度浓度,作为制作标准曲线 DNA 模板,每一个梯度设置 3 个平行,将配置好 的体系放入 Bio-Rad iQ5 实时荧光定量 PCR 仪扩增 目的基因,以梯度稀释液中 DNA 的拷贝数的对数 作为横坐标,以 C_t 值作为纵坐标制作标准曲线。

1.6 数据分析和数据处理

将所得序列数据用 FLASH 1.2.3 和 Prinseq 0.20.4 软件进行质量控制,再通过 Mothur 1.30.1 软件进行校正,去除嵌合体及靶区域外序列,最后 采用 Uclust 1.1.579 软件进行 OTU (Operational taxonomic units)聚类分析,采用 RPD classifier 软件 贝叶斯算法对 97%相似度水平的 OTU 代表序列进 行分类学分析,统计各样品的菌落组成,分类可 信度用 Bootstrap 方法估算。分析所用数据库有 RDP classifier 数据库(16S rRNA 基因)、Sliva 数据 库(16S rRNA 基因)和 Unite ITS 数据库。样品丰富 度稀疏分析图利用 Mothur 1.30.1 软件绘制。

2 结果与分析

2.1 土壤的理化性质和 PAHs 含量

不同土壤样品的理化性质和 PAHs 含量如表 2 所示。

根际土壤中 PAHs 含量低于裸地土壤,两种土壤 中 PAHs 含量均高于 1 000 μg/kg,参照 Maliszewskakordybach 对欧洲农业土壤 PAHs 含量与分布所划分

表 2 不同土壤样品中 PAHs 含量和土壤理化性质									
Table 2 Total PAHs content and physicochemical properties of soils									
样品编号	PAHs 含量	含水率		盐含量	有机质	全氮	有效磷	有效钾	碳氮比
Sample	PAHs content	Moisture	рН	Salinity	Organic matter	Total nitrogen	Available P	Available K	C/N
code	(µg/kg)	(%)		(g/kg)	(g/kg)	(g/kg)	(mg/kg)	(mg/kg)	0/11
1	1 065.33	15.90	8.20	22.51	24.41	1.59	29.07	571.88	15
2	1 309.02	10.55	8.22	40.03	18.80	0.71	38.94	434.19	26

注: 样品编号 1: 碱蓬根际土壤样品; 样品编号 2: 无碱蓬生长区域土壤样品(裸地).

Note: Sample 1: Soil samples in the seepweed rhizosphere; Sample 2: Soil samples in the nudation.

表 3 样品各项 Alpha 多样性指数 Table 3 The Alpha diversity index of the sample						
样品编号	文库覆盖率	Chao 1 指数	ACE 指数	Shannon 指数	Simpson 指数	
Sample code	Coverage	Chao 1 index	ACE index	Shannon index	Simpson index	
1	0.944	11 461	15 555	7.01	0.002 9	
2	0.927	8 262	11 186	6.77	0.004 2	

的 4 个等级,这两种土壤的 PAHs 污染水平均为严重 污染^[17]。

两种土壤样品的 pH 和可溶性盐含量表明其均 为盐碱土壤,对比发现不同土壤的 pH 值差别不 大,但翅碱蓬根际土壤的盐含量显著低于裸地土 壤。翅碱蓬根际土壤有机质和总氮含量分别高于 裸地土壤,且 C/N 值为 15,低于裸地土壤样品的 26,说明翅碱蓬根际土壤 C/N 值更适于 PAHs 降解 微生物发挥作用。根际土壤的有效磷含量略低于 裸地土壤,而有效钾的含量相对较高。

2.2 序列数据预处理及 OTU 聚类分析

由 MiSeq 双端测序所得样品数据经质量控制, 去除非靶区域序列、嵌合体、短片段序列等,使 得质控后序列长度大部分分布在 400-600 bp 之 间,满足序列分析要求。质控后,根际土壤高质 量序列数为 53 854 条,高于裸地土壤的高质量序 列数 30 312 条。

根据 Barcode 标签对样品进行序列拆分,去冗 余处理后获得 16S rRNA Unique reads,并在 97%相 似度下将其聚类为用于物种分类的 OTU,统计得到 各个样品在不同 OTU 中的丰度信息,根际土壤产 生 5 934 个 OTU,裸地土壤产生 4 262 个 OTU。

2.3 不同样品 Alpha 多样性分析

Alpha 多样性分析指标包括文库覆盖率 (Coverage)、Chao 1 指数、ACE 指数、Shannon 指 数和 Simpson 指数,各指数的值如表 3 所示。

样品 1 和 2 的文库覆盖率均大于 92.7%,说明 样本中序列没有被测出的概率低,本次测序结果 能够代表样本的真实情况。根际土壤的 Chao 1、 ACE 和 Shannon 指数值均高于裸地土壤,而 Simpson 指数值低于裸地土壤,表明两种土壤中的 物种丰度和多样性存在明显差异。 OTU水平下,结果显示根际土壤包含5934个 OTU,高于裸地土壤的4262个OTU,不同样品中 共有和特有的OTU数目用Venn图显示,如图1所 示。由图1可知,有2250个OTU是根际土壤和裸 地土壤中共有的,分别特有3684和2012个 OTU,两种土壤样品总共有7946个OTU,共有 OTU数目占全部的28.32%,相同的OTU所占比例 较低,说明两种样品之间存在较大差异性。

2.4 土壤微生物分类及分析

根际土壤测序获得 32 门(亚门) 64 纲 128 目 241 科 758 属土壤细菌,裸地土壤测得 28 门(亚门) 58 纲 118 目 228 科 676 属土壤细菌,不同土壤中门 (亚门)分类水平下菌群组成和丰度情况如表 4 所示。 由表 4 可知,变形菌门(Proteobacteria)在两种土壤样 品中均是优势菌门,在根际土壤和裸地土壤中的相 对丰度分别是 55.22%和 46.96%,远高于次优势门。 根际土壤和裸地土壤的次优势门同为拟杆菌门 (Bacteroidetes),相对丰度分别为 10.64%和 13.07%。

图 1 不同样品中共有和独有的 OTU 数目 Venn 图 Figure 1 Venn analysis for bacterial species (OTUs) of different samples

注: 序列按相似度高于 0.97 进行 OTU 聚类. Note: OTUs: The sequences are clustered according to the similarity above 0.97.

表 4	 门水平分类] Table 4 	F不同土壤样品中菌群 Comparison of bacteria	丰度、相对丰度 a groups at phylur	和相对丰度之比 n level	
	+	·····································	+ gi ou po uo poi y iu 十词	襄样品 2	
菌群(门水平分类)	Sample code 1		Samp	ble code 2	相对丰度比值
Bacteria groups (phylum level)	Sequence 数 Sequence number	相对丰度 Relative abundance (%)	Sequence 数 Sequence number	相对丰度 Relative abundance (%)	Relative abundance ratio
Proteobacteria	29 738	55.22	14 233	46.96	1.18
Bacteroidetes	5 732	10.64	3 961	13.07	0.81
Actinobacteria	4 531	8.41	1 561	5.15	1.63
Firmicutes	4 088	7.59	2 336	7.71	0.98
Chloroflexi	3 053	5.67	2 308	7.61	0.75
Planctomycetes	1 512	2.81	405	1.34	2.10
Gemmatimonadetes	1 336	2.48	1 159	3.82	0.65
Verrucomicrobia	958	1.78	283	0.93	1.91
Cyanobacteria	897	1.67	2 935	9.68	0.17
Spirochaetae	414	0.77	292	0.96	0.80
Acidobacteria	399	0.74	141	0.47	1.57
Chlorobi	220	0.41	180	0.59	0.69
Nitrospirae	173	0.32	32	0.11	2.91
Tenericutes	160	0.30	123	0.41	0.73
Deinococcus-Thermus	154	0.29	66	0.22	1.32
Chlamydiae	134	0.25	19	0.06	4.17
Deferribacteres	90	0.17	29	0.10	1.70
Euryarchaeota	65	0.12	114	0.38	0.32
Candidate_division_TM7	50	0.09	36	0.12	0.75
Lentisphaerae	37	0.07	14	0.05	1.40
Elusimicrobia	31	0.06	16	0.05	1.20
Candidate_division_WS3	25	0.05	10	0.03	1.67
Unclassified	17	0.03	23	0.08	0.38
Candidate_division_OD1	11	0.02	18	0.06	0.33
Aquificae	9	0.02	-	-	-
Fibrobacteres	5	0.01	1	0	-
Crenarchaeota	5	0.01	1	0	-
Thermotogae	3	0.01	-	-	-
Synergistetes	3	0.01	14	0.05	0.20
Dictyoglomi	2	0	-	_	_

李志杰等: 高通量测序解析多环芳烃污染盐碱土壤翅碱蓬根际微生物群落多样性

注: 0: 相对丰度小于 0.01%; -: 未在该种类样品中检测到对应菌群; Unclassified: 未分类序列.

0

0

_

Note: 0: Relative abundance <0.01%; -: Not detected; Unclassified: Not classified.

1

1

_

Armatimonadetes

Candidate_division_KB1

Fusobacteria

_

0

0

_

1

1

不同样品中菌群相对丰度不同,表明样品的 群落结构存在差异, 计算各类细菌的相对丰度比 值(细菌在根际土壤中相对丰度与裸地土壤中相对 丰度之比),比值越接近于 1,则说明该类细菌在不 同样品中的存在情况越相似,厚壁菌门(Firmicutes) 在根际土壤中的相对丰度为 7.59%, 在裸地土壤中 为 7.71%, 相对丰度高且接近, 比值为 0.98, 表明 厚壁菌门(Firmicutes)在两种土壤环境中均有较强 的适应性,实验用的两种土壤环境的不同不会影 响该类细菌在土壤的含量。另一方面,如蓝细菌 门(Cyanobacteria)在根际土壤中的相对丰度为 1.67%, 而在裸地土壤中为 9.68%, 相对丰度是在 根际土壤中的 5.80 倍, 差异明显, 说明蓝细菌门 (Cyanobacteria)更适应地表裸露的土壤环境。相对 丰度比值小于 0.5 或大于 2.0 表明菌群在不同土壤样 品中存在显著差异,不同门类细菌在根际土壤中显 著高(比值大于 2.0)的有浮霉菌门(Planctomycetes)、 疣微菌门(Verrucomicrobia)、硝化螺旋菌门 (Nitrospirae)、衣原体门(Chlamydiae),显著低(比 值小于 0.5)的有蓝藻细菌门(Cvanobacteria)、广古 菌门(Euryarchaeota)。

在属分类水平下,根际土壤中测得 758 属细 菌,其中优势菌属(相对丰度大于 1%)有 23 个属, 其 中 包 括 嗜 盐 碱 或 耐 盐 碱 优 势 菌 属 如 *Thioalkalispira* (3.35%)、*Marinilabiaceae* (2.44%)、 *Salinimicrobium* (1.76%)等。裸地土壤中测得 676属 细菌,比根际土壤少 82 个属,其优势菌属有 24 个, 其中嗜盐碱或耐盐碱优势菌属有 *Salinimicrobium* (3.08%)、*Marinilabiaceae* (2.61%)、*Halothiobacillus* (2.31%)、*Desulfobacteraceae* (2.09%)、*Caenispirillum* (1.83%)等。根际土壤中丰度最高的前 50 个菌属相 对丰度总和为 61.47%,裸地土中为 63.65%,说明 丰度最高的前 50 个菌属已包含了土壤中的大部分 细菌。对两种土壤中相对丰度最高的前 50 个菌属 进行比较,发现有 32 个菌属相同。

根据菌属在不同土壤样品中的相对丰度之比, 选择丰度较高(Sequence 数大于 100)且差异性较大 (相对丰度之比小于 0.5 或大于 2.0)的 53 个菌属进行 比较分析,结果如图 2 所示。从图 2 中可见,不同 土壤样品中的优势菌属(相对丰度大于 1%)分布不

图 2 属水平分类下不同土壤样品中菌属丰度对比 Figure 2 Comparison of bacteria groups at genus level

注: 虚线表示相对丰度等于1%.

Note: The imaginary line: Relative abundance=1%.

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

同,群落结构差异较大。比较发现,在根际土壤中 有 36 个菌属的相对丰度显著高于其在裸地土壤中 的相对丰度, 而另外 17 个菌属的相对丰度显著低 于裸地土样品中的。其中 Thioalkalispira 在根际土 壤中的相对丰度为 3.35%, 是该土壤中的次优势菌 属,而此菌属在裸地土壤中的相对丰度仅为0.82%, 相差 4 倍。另外在根际土壤中的优势菌属,如 Coleofasciculus (1.42%) , Fusibacter (1.12%) , Desulfobulbus (1.14%)等均不能在裸地土中成为优 势菌;而在裸地土壤中的优势菌属,如 Phormidium (2.48%) *Lyngbya* (2.42%) *Halothiobacillus* (2.31%), Caenispirillum (1.83%), Alteromonadaceae (1.29%) 等均不是根际土壤中的优势菌,并且没有测序得到 Lyngbya 菌属序列。菌属 Denitromonas 在根际土壤 中的相对丰度为 0.19%, 对比裸地土壤中的相对丰 度 0.01%, 相差 19 倍; Leptolyngbya、Phormidium 在根际土壤和裸地土壤中的相对丰度差异分别是 50和100倍。

2.5 RT-PCR 测定 PAH-RHD_α基因拷贝数和 16S rRNA 基因拷贝数

在退火温度为 47-58 °C时, 扩增得到 PAH-RHD_α GN 基因, 但未扩增到 PAH-RHD_α GP 基因。根据 扩增退火温度条带清晰度,选取 50 °C 作为扩增 PAH-RHD_α GN 基因的退火温度。利用 PAH-RHD_α GN 基因反映土壤中微生物 PAH-RHD_α 基因的情 况,所以下文中的 PAH-RHD_α基因代表的是微生物 中 PAH-RHD_α GN 基因的情况。不同土壤样品中 PAH-RHD_α和 16S rRNA 基因拷贝数如表 5 所示,根 际土壤样品的 PAH-RHD_α基因拷贝数和 16S rRNA

表 5 不同土壤样品中 PAH-RHD _α 基因和 16S rRNA							
基因拷贝数							
Table 5 Determination of PAH-RHD _a and 16S rRNA							
gene copy number for samples							
样品编号	PAH-RHD _α 基因拷贝数	16SrRNA 基因拷贝数					
Sample	PAH-RHD $_{\alpha}$ genes copy	16S rRNA genes copy					
code	(copies/g)	(copies/g)					
1	2.12×10^{3}	3.34×10^{6}					
2	-	9.21×10 ⁵					
N. + 1/							

注:-:未检测到.

Note: -: Not detected.

基因拷贝数(2.12×10³ copies/g 和 3.34×10⁶ copies/g) 均高于裸地土壤(未检出和 9.21×10⁵ copies/g),说 明根际土壤中 PAHs 降解菌的降解作用优于裸地土 壤,并且其细菌数量也多于裸地土壤,与高通量 测序结果一致。

3 讨论

3.1 土壤 PAHs 污染状况及理化性质

样品 pH 和可溶性盐含量表明,本研究中的两 种土壤均为盐碱土壤,与胜利油田盐碱土壤的污染 特征类似^[12]。高世珍等^[8]研究发现翅碱蓬对 PAHs 有吸收和富集作用,且根部的吸收能力最强达到 1.5 μg/g;杨红军等^[18]研究发现翅碱蓬对 100 mg/kg 菲污染土壤有 42.86%的去除率。翅碱蓬对 PAHs 的 富集作用,可能是根际土壤中 PAHs 含量低于裸地 土壤的原因之一。

翅碱蓬通过改善根际土壤盐碱环境,增加土 壤含 N量,降低 C/N 比值,促进 PAHs 降解微生物 发挥作用。张立宾等^[19]研究发现种植翅碱蓬能有效 降低盐碱土壤中的含盐量。土壤中 C/N 比为 12 时利 于土壤微生物对石油污染物的分解利用^[20]。本研 究中两种土壤 C/N 比都大于 12,推测油田开采导 致的石油污染增加了土壤中的碳源,另一方面土 壤中降解石油烃、PAHs 的微生物在降解过程中消 耗 N 源,但 C 源过剩,从而使土壤 C/N 比升高^[2]。 翅碱蓬根际土壤中的 C/N 比值为 15,有利于根际 降解微生物发挥作用,是根际土壤的 PAHs 含量低 于裸地土壤的主要原因。

3.2 土壤样品微生物多样性分析

原核生物基因组内的 16S rRNA 基因多样性会 导致群落多样性测定结果偏高,这种影响与 16S rRNA 基因的检测位置有关。Sun 等^[21]研究发现在 97%的序列相似度下,V6 区域的检测结果受影响 程度最高,达12.9%,V4-V5 区域受影响程度最低 为 3.0%。本研究利用 MiSeq 测序技术对 16S rRNA 的 V3-V4 区域进行测序分析,保证了 16S rRNA 基 因多样性对测序结果的影响程度最小。对比不同 土壤中的菌群信息发现,翅碱蓬根际土壤中的微 生物种类和数量均高于相同地理环境中的裸地土 壤。推测其原因,一方面在于翅碱蓬对 PAHs 污染 盐碱土壤的改良作用,另一方面在于翅碱蓬与其 根际微生物之间的相互作用促进了降解微生物的生 长,提高了修复效果。高乃媛等^[22]利用翅碱蓬修复 石油污染盐碱土壤得到类似结果。

属分类发现根际土壤中固氮螺菌属(Azospira) 的相对丰度高达 2.73%, 裸地土壤中仅为 1.11%, 这类菌具有固氮的作用,所以根际土壤环境的N含 量高于裸地土壤,与所测结果一致。属分类显示, Halothiobacillus Thiohalophilus Halobacteroidaceae Halomonas , Thiohalomonas , Thiohalobacter , Thioalkalispira、Alkaliphilus、Geoalkalibacter 等有 过嗜盐或嗜碱报道的微生物为两类土壤中的优势 菌属,但在不同土壤中的相对丰度存在明显差异。 比较发现, 翅碱蓬根际土壤中的盐含量明显低于 裸地土壤,微生物对土壤含盐量的适应能力不同, 导致了上述细菌在两种土壤样品中的丰度分布存 在差异,差异较大的菌属如 Rhodobacteraceae、 Thioalkalispira, 在根际土壤中相对丰度 3.56%和 3.35%, 裸地土壤中仅为 1.48%和 0.82%。Gutierrez 等^[23]研究发现 Rhodobacteraceae 与低分子量 PAHs 的降解有关。

添加功能菌可提高 PAHs 污染的修复效果,但 常规的功能菌难以在高盐碱土壤环境中发挥有效 作用,而翅碱蓬对此类土壤的适应能力和修复作 用大大提高了运用生物修复方法治理此类污染的 可行性。从整体上来看,根际土壤里的微生物丰 度和种类均比裸地土壤中的高,说明翅碱蓬根际 能够为微生物提供良好的生长环境,微生物资源 丰富,有待于进一步研究。在鉴别出的菌属中, 发现一些相对丰度较高的功能菌属,如海旋菌 (*Thalassospira*)、鞘氨醇单胞菌属(*Sphingomonas*)、 假 单 胞 菌 (*Pseudomonas*) 、 寡 养 单 胞 菌 (*Stenotrophomonas*)、芽孢杆菌属(*Bacillus*)等,它 们在根际土壤样品中相对丰度依次为 0.79%、 0.46%、0.65%、0.41%、0.31%。上述菌属中,分 别有多种菌株已被文献报道,发现其有降解 PAHs 的功能并被筛选出来,如 Kodama 等^[24]分离到具有 PAHs 降解功能的新型菌株 *Thalassospira tepidiphila* sp.; Schuler 等^[25]发现 *Sphingomonas* sp. strain LH128 具有降解菲和苯并[a]菌的功能; Ling 等^[26] 报道了 *Bacillus vallismortis* JY3A 降解芘的相关研 究; Santos 等^[27]研究了 *Pseudomonas aeruginosa* 312A 对菌的降解作用。

本研究对土壤样品中微生物的 16S rRNA 基因 进行检测,对比孙佳杰等^[28]对天津滨海盐碱土壤 微生物生态特征的研究结果,发现本研究所得盐碱 土壤细菌数量偏低,这是由于土壤环境的不同导 致。本研究土壤样品的含盐量为 22.51-40.03 g/kg, 显著高于孙佳杰等研究所用样品的含盐量 0.49-18.48 g/kg, 而周宁一^[29]指出细菌数量与土壤 盐含量呈显著负相关,土壤盐害程度越高,微生 物数量越少。对土壤样品中微生物降解 PAHs 的 PAH-RHDa 基因的检测结果显示翅碱蓬根际土壤中 存在着 PAH-RHD_a基因, 而在裸地土壤中没有检测 到PAH-RHD_a基因,说明了根际土壤中的翅碱蓬在 富集 PAH 的过程中也能够保留微生物降解 PAH 能 力。由于细菌主要通过 PAHs 起始双加氧酶对 PAHs 进行开环降解, PAH-RHD_α 基因的存在可推 测此土壤样品中存在 PAHs 降解菌的可能性。

综上所述, PAHs 污染盐碱土壤中蕴含着丰富 的微生物资源,通过生物刺激盐碱土壤土著微生 物或生物强化添加嗜盐 PAHs 高效降解菌,将在 PAHs 污染盐碱土壤的生物修复中发挥重要作用。

4 结论

(1) Thioalkalispira 、 Halothiobacillus 、 Thiohalophilus 等嗜盐碱或耐盐碱微生物是胜利油 田 PAHs 污染盐碱土壤中的优势菌属,存在丰富 的嗜盐碱或耐盐碱 PAHs 降解微生物资源;有些 菌属可能与 PAH 降解或耐盐碱相关,有待进一步 研究。

(2) 翅碱蓬作为石油开采区盐碱土壤的优势植物,能有效降低盐碱化土壤中的含盐量,增加土壤

N、P、K的含量并改善C/N值,增加微生物群落结构多样性,提高 PAHs 关键功能基因的丰度,有助于促进嗜盐 PAHs 降解微生物在 PAHs 污染盐碱土壤的生物修复中发挥作用。

参考文献

- Cao YZ, Liu XJ, Xie YF, et al. Patterns of PAHs concentrations and components in surface soils of main areas in China[J]. Acta Scientiae Circumstantiae, 2012, 32(1): 197-203 (in Chinese) 曹云者,柳晓娟,谢云峰,等. 我国主要地区表层土壤中多环 芳烃组成及含量特征分析[J]. 环境科学学报, 2012, 32(1): 197-203
- [2] Liu J, Song XY, Sun RL, et al. Petroleum pollution and the microbial community structure in the soil of Shengli Oilfield[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 850-856 (in Chinese)
 刘健, 宋雪英, 孙瑞莲, 等. 胜利油田采油区土壤石油污染状

况及其微生物群落结构[J]. 应用生态学报, 2014, 25(3): 850-856

[3] Li XC, Hu Y, Du XY, et al. Simulated model of the fate and transfer for PAHs in the multimedia environment for a onshore oilfield[J]. Journal of Safety and Environment, 2011, 11(6): 5-9 (in Chinese)

李兴春, 胡艳, 杜显元, 等. 陆地石油开采区 PAHs环境多介质 分布及迁移转化模拟[J]. 安全与环境学报, 2011, 11(6): 5-9

- [4] Zou DX, Luo YM, Xu FH, et al. Microbial degradation of polycyclic aromatic hydrocarbons in soil environment and combined bioremediation of PAHs contaminated soils[J]. Soils, 2007, 39(3): 334-340 (in Chinese)
 邹德勋, 骆永明, 徐凤花,等. 土壤环境中多环芳烃的微生物 降解及联合生物修复[J]. 土壤, 2007, 39(3): 334-340
- [5] Gao YC, Wang JN, Guo SH, et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China[J]. Applied Soil Ecology, 2015, 86: 165-173
- [6] Cheung PY, Kinkle BK. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils[J]. Applied and Environmental Microbiology, 2001, 67(5): 2222-2229
- [7] Li CF, Ge BM, Jiang SH, et al. Review on remedial effect of Suaeda salsa on saline and polluted soils[J]. Chinese Journal of Soil Science, 2014, 45(4): 1014-1019 (in Chinese) 李超峰, 葛宝明, 姜森颢, 等. 碱蓬对盐碱及污染土壤生物修 复的研究进展[J]. 土壤通报, 2014, 45(4): 1014-1019
- [8] Gao SZ, Zhao XR, Cui SM, et al. Distribution characteristics of the typical persistent organic pollutants (POPs) in *Suaeda heteroptera*[J]. Environmental Science, 2010, 31(10): 2456-2461 (in Chinese) 高世珍,赵兴茹,崔世茂,等. 典型持久性有机污染物在翅碱

蓬中的分布特征[J]. 环境科学, 2010, 31(10): 2456-2461

[9] Wang XX, Bai ZH, Jin DC, et al. Bacterial diversity and halotolerant petroleum-degrading bacteria of the rhizosphere of

Suaeda salsa (L.) in petroleum-contaminated saline-alkali soil[J]. Microbiology China, 2011, 38(12): 1768-1777 (in Chinese) 王新新, 白志辉, 金德才, 等. 石油污染盐碱土壤翅碱蓬根围 的细菌多样性及耐盐石油烃降解菌筛选[J]. 微生物学通报, 2011, 38(12): 1768-1777

- [10] Arulazhagan P, Vasudevan N. Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain *Ochrobactrum* sp. VA1[J]. Marine Pollution Bulletin, 2011, 62(2): 388-394
- [11] Cui CZ, Feng TC, Yu YQ, et al. Isolation, charcaterization of an anthracene degrading bacterium *Martelella* sp. AD-3 and cloning of dioxygenase gene[J]. Environmental Science, 2012, 33(11): 4062-4068 (in Chinese) 崔长征,冯天才,于亚琦,等. 降解蒽嗜盐菌 AD-3 的筛选、降 解特性及加氧酶基因的研究[J]. 环境科学, 2012, 33(11): 4062-4068
- [12] Song LC, Li PJ, Liu W, et al. Isolation, identification and degradation characteristics of a PAHs-degrading bacteria from salt-alkaline soil[J]. Microbiology China, 2011, 38(2): 282-287 (in Chinese) 宋立超, 李培军, 刘宛, 等. 盐碱土壤 PAHs降解菌的筛选鉴定

及其降解特性[J]. 微生物学通报, 2011, 38(2): 282-287

- [13] Cébron A, Norini MP, Beguiristain T, et al. Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD_α) genes from Gram positive and Gram negative bacteria in soil and sediment samples[J]. Journal of Microbiological Methods, 2008, 73(2): 148-159
- [14] Zhang J, Zhang HW, Li XY, et al. Bacterium and mycobacterium diversity in paddy soils under PAHs stress[J]. Chinese Journal of Eco-Agriculture, 2008, 16(2): 405-410 (in Chinese) 张晶,张惠文,李新宇,等. 多环芳烃胁迫下稻田土壤细菌及分支 杆菌种群多样性研究[J]. 中国生态农业学报, 2008, 16(2): 405-410
- [15] Felske A, Akkermans ADL, de Vos WM. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints[J]. Applied and Environmental Microbiology, 1998, 64(11): 4581-4587
- [16] Tang JZ, Feng TC, Liu SY, et al. Functional verification of a dual functional consortium: degrading phenanthrene and oxidizing arsenite simultaneously[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(4): 450-456 (in Chinese)
 汤军芝,冯天才,刘世友,等. 菌群降解菲和氧化三价砷的双

功能验证[J]. 华东理工大学学报: 自然科学版, 2013, 39(4): 450-456

- [17] Maliszewska-Kordybach B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry, 1996, 11(1/2): 121-127
- [18] Yang HJ, Xie WJ, Chen ZY, et al. Decontamination of six grass species to phenanthrene in soil[J]. Chinese Journal of Soil Science, 2012, 43(5): 1242-1246 (in Chinese) 杨红军,谢文军,陈志英,等. 六种野草对土壤中菲的降解研 究[J]. 土壤通报, 2012, 43(5): 1242-1246

[19] Zhang LB, Xu HL, Zhao GX. Salt tolerance of *Suaeda salsa* and its soil ameliorating effect on coastal saline soil[J]. Soils, 2007, 39(2): 310-313 (in Chinese) 张立宾, 徐化凌, 赵庚星. 碱蓬的耐盐能力及其对滨海盐渍土

的改良效果[J]. 土壤, 2007, 39(2): 310-313

- [20] Płaza G, Nałęcz-Jawecki G, Ulfig K, et al. The application of bioassays as indicators of petroleum-contaminated soil remediation[J]. Chemosphere, 2005, 59(2): 289-296
- [21] Sun DL, Jiang X, Wu QL, et al. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity[J]. Applied and Environmental Microbiology, 2013, 79(19): 5962-5969
- [22] Gao NY, Liu XB, Zhao XR. Influence of oil in soil on growth and physiological indexes of *Suaeda heteroptera* and plant-microbial remediation[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1578-1582 (in Chinese) 高乃媛, 刘宪斌, 赵兴茹. 石油烃对翅碱蓬生理特性的影响及植

物-微生物联合降解[J]. 环境工程学报, 2013, 7(4): 1578-1582

- [23] Gutierrez T, Singleton DR, Aitken MD, et al. Stable isotope probing of an algal bloom to identify uncultivated members of the *Rhodobacteraceae* associated with low-molecular-weight polycyclic aromatic hydrocarbon degradation[J]. Applied and Environmental Microbiology, 2011, 77(21): 7856-7860
- [24] Kodama Y, Stiknowati LI, Ueki A, et al. Thalassospira tepidiphila

sp. nov. a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(3): 711-715

- [25] Schuler L, Jouanneau Y, Chadhain SMN, et al. Characterization of a ring-hydroxylating dioxygenase from phenanthrene-degrading *Sphingomonas* sp. strain LH128 able to oxidize benz[a]anthracene[J]. Applied Microbiology and Biotechnology, 2009, 83(3): 465-475
- [26] Ling JY, Zhang GY, Sun HB, et al. Isolation and characterization of a novel pyrene-degrading *Bacillus vallismortis* strain JY3A[J]. Science of the Total Environment, 1994, 409(10): 1994-2000
- [27] Santos EC, Jacques RJS, Bento FM, et al. Anthracene biodegradation and surface activity by an iron-stimulated *Pseudomonas* sp.[J]. Bioresource Technology, 2008, 99(7): 2644-2649
- [28] Sun JJ, Yin JD, Xie YH, et al. Microbial ecological characteristics of saline-alkali soil in coastal area of Tianjin[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(3): 57-61 (in Chinese)
 孙佳杰, 尹建道, 解玉红, 等. 天津滨海盐碱土壤微生物生态 特性研究[J]. 南京林业大学学报: 自然科学版, 2010, 34(3): 57-61
- [29] Zhou NY. Microbial diversity in saline-alkali soil[J]. Microbiology China, 2012, 39(7): 1030 (in Chinese)
 周宁一. 盐碱地微生物类群的多样性[J]. 微生物学通报, 2012, 39(7): 1030

编辑部公告

邀请您关注《微生物学通报》公众微信号

 δ

为了更好地与读者、作者、审稿专家和编委朋友们及时沟通、方便服务,《微生物学通报》已开通 公众微信服务号。作者通过微信能及时收到稿件各流程通知,第一时间了解稿件进程并及时处理;审稿 专家和编委可通过微信及时收到审稿邀请,还可通过手机审稿;读者通过微信可了解《微生物学通报》 文章目录,查找阅读感兴趣的文章。

关注办法:

- 1、在微信公众号搜索"微生物学通报"或"wswxtb";
- 2、用微信扫右边二维码:

