微生物学通报 Microbiology China tongbao@im.ac.cn

中国虫草一新记录种

周叶鸣 邹晓* 瞿娇娇 梁宗琦 (贵州大学 生命科学学院 真菌资源研究所 贵州 贵阳 550025)

摘 要:【目的】对一个寄生鳞翅目幼虫的虫草标本 Dxhir140901 进行分类鉴定。【方法】采用形态学比较和基于 ITS1-5.8S-ITS2rDNA 的系统发育与进化网络分析进行鉴定。【结果】形态学观察:标本的分离菌株形态显示其为典型的被毛孢属真菌,具有两型产孢结构: A 型产孢细胞柱状,(1.8-6.3) μm×1.8 μm; B 型产孢细胞锥形,基部柱状,向上逐渐变细无明显颈部,基部宽 3-3.8 μm,长 21-63 μm,颈部宽 1.8-2.0 μm,菌丝末端可直接形成产孢细胞;孢子橘瓣形或卵形,(8.1-10.8) μm×(2.7-5.4) μm,具粘液,黏液层厚 1.8-2.7 μm。系统发育分析结果显示该菌株与巨针线形虫草 Ophiocordyceps macroacicularis 聚为一支,支持率为 98%,进化网络分析也支持上述结果。【结论】通过与 O. macroacicularis 酌形态比较和分子系统学分析结果,Dxhir140901 及其分离株 Gzuifr-hir140901 为巨针线形虫草 Ophiocordyceps macroacicularis S. Ban, T. Sakane & Nakagiri 的无性阶段,该种为中国新记录种。

关键词:线形虫草属,无性阶段,分类,蝠蛾幼虫,生物防治

A new record of the genus Ophiocordyceps from China

ZHOU Ye-Ming ZOU Xiao* QU Jiao-Jiao LIANG Zong-Qi

(Institute of Fungal Resource, College of Life Sciences, Guizhou University, Guiyang, Guizhou 550025, China)

Abstract: [Objective] Identification specimen Dxhir140901 which parasitized on Lepidopterous larvae. **[Methods]** The comparison of morphological characteristics and the analysis of phylogenetic tree and the evolution network based on internal transcribed spacer (ITS1-5.8S-ITS2rDNA) sequence were used for identification of this specimen. **[Results]** Morphological observation: morphological characteristics of the strains Gzuifr-hir140901 was similar to *Hirsutella* Pat. It has two types of phialides, A-phialides, column, $(1.8-6.3) \mu m \times 1.8 \mu m$. B-phialides, columnar base, awl-shape and tapers, width of base 3–3.8 μm , length 21–63 μm , width of neck 1.8–2.0 μm , Phialides formed directly from the end of mycelium. Conidia orange segments or oval, $(8.1-10.8) \mu m \times (2.7-5.4) \mu m$, mucus thick 1.8–2.7 μm . From the results of the phylogenetic analysis we can find that the Gzuifr-hir140901 strains and *Ophiocordyceps macroacicularis* S. Ban, T. Sakane & Nakagiriin belong to the same clade with a 98% approval rating. Branching sequence analysis supports the same results. **[Conclusion]** The sample Dxhir140901 and strains Gzuifr-hir140901 was a anamorph of *O. macroacicularis* which is a

基金项目:国家自然科学基金项目(No. 31360031);国家自然科学基金重大项目子项目(No. 31093440);贵州省 科技攻关项目(No. 黔科合 NY[2013]3034);贵州大学研究生创新基金项目(No. 研农 2014019)

*通讯作者: ⊠: ls.zoux@gzu.edu.cn

收稿日期: 2015-05-28; 接受日期: 2015-06-29; 优先数字出版日期(www.cnki.net): 2015-07-14

new record from China.

Keywords: Ophiocordyceps, Asexual stage, Taxonomy, Larva of a species of Hepialidae, Biocontrol

被毛孢属 Hirsutella Pat. 是以嗜虫被毛孢 Hirsutella entomophila Pat.作为模式种而建立。该属 主要特征为: 孢梗束一般柱状、丝状, 单生或分枝, 有或无; 菌丝通常无色、淡色或深褐色; 产孢细胞 散生于菌丝体上或者侧生于孢梗束外围菌丝上,表 面光滑或粗糙,颈部简单或再育成多个小颈,颈部 一般直,部分种可呈螺旋状或波浪状;分生孢子单 细胞,少数多细胞,一般为柠檬形、椭圆形、梭形、 橘瓣形等,经常埋于无色或有色的黏液层中;少数 种还可形成二次分生孢子^[1]。迄今, Index Fungorum (http://www.indexfungorum.org)收录的被毛孢共有 109个分类单元。被毛孢属有4个种与本文描述的新 记录种接近,并具有两型产孢细胞且锥形产孢细胞 长度大于40 µm, 分别是H. stilbelliformis var. stilbelliformis H. C. Evans & Samson H. stilbelliformis var. dolichoderi H. C. Evans & Samson^[2] , *H. sporodochialis* H. C. Evans & Samson^[3], *H. Zhangjiajiensis* Z. Q. Liang^[4].

被毛孢属的寄主范围很广,包括蜘蛛、螨类、 昆虫等节肢动物和线虫,具有潜在的生物防治价 值^[5-7]。20世纪80年代早期发现*H. rhossiliensis* Minter & B. L. Brady对许多植物的寄生线虫如茎线 虫、根结线虫等有较强的致死效果^[8-9];*H. citriformis* Speare对果园中的柑橘木虱有很好的防治效果^[10]。 被毛孢属的有性阶段为线形虫草属*Ophiocordyceps* (Petch) Sung *et al*^[11],虫草是亚洲许多国家的传统药 物,因此被毛孢属真菌中的活性物质也受到医药开 发研究者的关注。研究表明一些被毛孢能产生各种 对人类有价值的活性化合物,这些化合物具有抗肿 瘤和抗疟疾的功效^[12-13]。

目前,已报道的无性型是被毛孢的线形虫草, 共有 27 个种^[11]。巨针线形虫草 *Ophiocordyceps macroacicularis* S. Ban, T. Sakane & Nakagiri 是最近 被报道的一个具有被毛孢无性型的线形虫草属新 种^[14]。其特征为:子座丛生,圆柱形,无分枝 (97.2-166.1) mm×(1.3-2.4) mm;子囊壳垂直表生, 卵形,淡褐色到棕色,(410-760) μm×(260-420) μm; 子囊透明,圆柱形,长 235-310 μm,子囊帽显著增 厚,直径 5.0-7.0 μm;子囊孢子针形的,具隔,透 明,(200-300) μm×(2.3-3.0) μm。同时,文中明确 指出巨针线形虫草的无性阶段是被毛孢并提供了 图片,但没有对无性阶段进行详细描述,也没有与 其它已发表被毛孢种类进行比较。本文从形态分类 鉴定的角度对其无性阶段进行了鉴定和描述,讨论 了该种与被毛孢属中其它相关种的区别,为该虫草 的正确分类提供了无性阶段的鉴定证据。

1 材料与方法

1.1 材料

1.1.1 标本:标本采自贵州省贵阳市桐木岭 (26°23'00.3"N,106°40'33.0"E),寄主为蝠蛾科幼虫。 标本编号:Dxhir140901;采集人:周叶鸣、瞿娇娇; 采集时间:2014年9月。菌株编号:Gzuifr-hir140901, 现保存于贵州大学真菌资源研究所菌种保藏中心 (GZAC)。

1.1.2 培养基与染色液: PDA 培养基: 马铃薯 200 g 切块,用水煮沸 30 min,过滤取汁,加葡萄糖 20 g,水补足 1 000 mL,pH 自然,1×10⁵ Pa 灭菌 30 min,凝固前加入链霉素和青霉素,倒平板备用。棉蓝染色液:苯胺蓝 0.025 g,乳酸 10 g,石炭酸 10 g,甘油 20 g,蒸馏水 10 mL。配制后用双层 搽镜纸过滤后备用。

1.1.3 分子系统学分析所用序列:将菌株 Gzuifr-hir140901测序得到的ITS1-5.8S-ITS2核酸序 列经 NCBI 的 BLAST 程序进行比对,下载相似度 大于 93%的核酸序列以及被毛孢属和线形虫草属 的部分真菌序列。表1为本研究用于分子系统学分 析的序列。

表 1 系统学分析所用 ITS1-5.8S-ITS2 序列及其 GenBank 登录号 Table 1 List of ITS1-5.8S-ITS2 sequences and GenBank numbers for phylogenetic analysis							
种类 Species	GenBank 登录号 GenBank accession No.	种类 Species	GenBank 登录号 GenBank accession No.				
Metacordyceps liangshanensis	KJ021169	H. minnesotensis	DQ078757				
M. liangshanensis	KJ021172	H. nodulosa	EF194146				
Cordyceps emeiensis	AJ309347	H. proturicola	AB378557				
C. sinensis	AY608925	H. rhossiliensis	AY745253				
C. sinensis	AY608925	H. rostrata	EF194150				
Ophiocordyceps robertsii	KC167174	H. satumaesis	KJ913066				
O. macroacicularis	AB968400	H. sinensis	AJ309355				
O. sinensis	EU570957	H. thompsonii	EF194153				
O. sinensis	JQ013106	H. tunicata	JN247824				
O. stylophora	JN943352	H. uncinata	AY365468				
H. aphidis	EF194156	H. vermicola	DQ345592				
H. citriformis	JF894156	H. versicolor	DQ345594				
H. guyana	DQ345595	Beauveria bassiana	AF322932				
H. huangshanensis	EF689043	B. bassiana	DQ364698				
H. liboensis	FJ957892	Gzuifr-hir140901	KR005829				

1.2 方法

1.2.1 菌株的分离、培养与形态鉴定:标本先用自 来水将虫体表面冲洗干净,再用无菌水冲洗标本, 接着用 75%的乙醇表面消毒 3-5 s。掰断标本虫体 部分,用接种针挑取虫体断面的血体腔部位的组织 块,接种到加有抗生素的 PDA 平板上,16°C 培养 30 d。培养好的菌落,用透明胶带黏取菌落边缘的 菌丝及产孢结构,95%乙醇固定后,用棉兰染色 30 min 以上,显微镜下观察描述并进行形态鉴定。

1.2.2 nrDNA 的扩增和测序:从 PDA 平板上挑取 菌丝体,根据 Tigano-Milani 等的方法提取总 DNA^[15]。提取的 DNA 置于-20 °C 保存,选用通用 引物 ITS5 (5'-GGTGAGAGATTTCTGTG-3')和 ITS4 (5'-TCCTCCGCTTATTGATATGC-3')扩增 ITS 区的 nrDNA。反应体系(25 μL): ddH₂O 8.5 μL, 模板 (10-100 mg/L) 2 μL, 引物 ITS4 和 ITS5 (0.4 μmol/L) 均为 1 μL, Master mix 为 12.5 μL。PCR 反应条件: 94 °C 5 min; 94 °C 40 s, 49 °C 40 s, 72 °C 60 s, 35 个循环; 72 °C 10 min。PCR 产物送上海 Invitrogen 公司测序。

1.2.3 分子系统学与拆分网络分析:用 MEGA 5.2 对序列进行对齐剪切后构建系统发育树,运行条件 为邻接法(Neighbor-Joining),运算次数(Replications) 1 000 次^[16]。采用 Splits Tree 4 构建折分网络图,所 用序列保存为 Fasta 格式,运行条件为 P-distance, Unrooted Neighor Net。用与被毛孢属亲缘关系较近的球孢白僵菌 *Beauveria bassiana* (Bals. -Criv.) Vuill. 作为外群。

2 结果

2.1 形态鉴定与描述

巨针线形虫草的无性阶段

图 1

The anamorph of Ophiocordyceps macroacicularisBan, T. Sakane & NakagiriFigure 1

The fungus hardly grow above 30 °C while growing slowly under 16 °C on the PDA agar, and colonies diam up to 25–30 mm after 30 d. The colonies margin be white and the middle light-brown part with cashmere. Mycelium is hyaline, smooth, septate, wide 3.6–4.5 μ m. Two bottles of terrier type were formed, A-phialides, column, (1.8–6.3) μ m× 1.8 μ m. B-phialides, columnar base, awl-shap and tapers, width of base 3–3.8 μ m, length 21–63 μ m, width of neck 1.8–2.0 μ m; Phialides formed directly from the mycelium end, occasional polyphialidic. Conidia orange segments or oval, (8.1–10.8) μ m× (2.7–5.4) μ m, enveloped in a hyaline mucus, thickness 1.8–2.7 μ m.

Teleomorph: *Ophiocordyceps macroacicularis* Ban, T. Sakane & Nakagiri.

Host: Larva of a species of Hepialidae, Lepidoptera.

Specimen examined: Dxhir140901, 2014, Y. M. Zhou & J. J. Qu collected from the Tongmuling of Guiyang city, Guizhou province and Gzuifr-hir140901, strains were isolated by Y. M. Zhou conserved in the Institute of fungal resource, Guizhou University.

菌落:在 PDA 上, 30 ℃ 以上不生长,16 ℃ 培养 30 d 菌落直径 25-30 mm。毡状,边缘白色, 中间灰褐色有凸起,凸起处有绒毛,背面浅褐色; 菌丝:透明、光滑、具隔,宽 3.6-4.5 μm;产孢细 胞:与菌丝无明显区分;形成两种类型产孢细胞, A型:柱状,(1.8-6.3) μm×1.8 μm。B型:锥形, 基部柱状宽 3-3.8 μm,向上逐渐变细,长 21-63 μm, 颈部宽 1.8-2.0 μm。菌丝末端可形成产孢细胞,有 再育现象;分生孢子:橘瓣状或卵型, (8.1-10.8) μm×(2.7-5.4) μm,孢子外具粘液,厚度 为 1.8-2.7 μm。

有性阶段: Ophiocordyceps macroacicularis S. Ban, T. Sakane & Nakagiri。

寄主:鳞翅目,蝠蛾科幼虫。

图 1 巨针线形虫草无性阶段产孢结构和菌落特征 (Gzuifr-hir140901)

Figure 1 Conidiogenous structures and colonies of the anamorph of *Ophiocordyceps macroacicularis* (Gzuifr-hir140901)

注: A: 标本(Dxhir140901); B-E: 在 PDA 上培养 30 d 后形 成的菌落; F, H: 产孢结构; G: 分生孢子. 标尺: B-E: 10 mm; F-H: 10 µm.

Note: A: The specimen (Dxhir140901); B-E: Clonies on PDA media for 30 days; F, H: The phialides structure on hyphae; G: Conidia. B-E: Bar=10 mm; F-H: Bar=10 µm.

标本:标本 Dxhir140901 及其分离株 Gzuifrhir140901 均保存于贵州大学真菌资源研究所菌种 保藏中心(GZAC)。

2.2 分子系统学与拆分网络分析结果

系统发育分析(图 2)发现,菌株 Gzuifrhir140901与*Ophiocordyceps macroacicularis*聚在同 一分支,支持率为98%,且与其他的被毛孢相比又 独立分支。用 Splits Tree 4 构建的拆分网络图(图 3) 展示了与系统发育树相似的结果。在网络中连接 Gzuifr-hir140901 的拆分图像,表明了它与 *Ophiocordyceps macroacicularis* 基本相同且与相关

http://journals.im.ac.cn/wswxtbcn

群存在明显差别。折分网络分析支持了系统发育树 (图 2)展示的结果。系统发育树(图 2)A分支中的线 形虫草的无性型皆为被毛孢,且基本都寄生于鳞翅 目幼虫,寄生线虫的 H. minnesotensis Minter & B. L. Brady 和分离自植物的 H. uncinata Seifert & H. Boulay 未见有关它们有性阶段的报道; B分支的被 毛孢属种类具有一个共同的形态学特征,它们的产 孢细胞颈部具有螺旋。 两型产孢细胞的种,A型在菌丝的侧面生长,菌丝 与产孢细胞之间有一个压实的层;B型(锥形)多长 在菌丝的末端^[2-3]。拥有锥形产孢细胞且长度最大 的、大于 40 μm 的被毛孢(表 2)有 *Hirsutella aphidis* petch^[13],*H. besseyi* E. E. Fisher^[17],*H. darwinii* Evans & Samson^[2], *H. guignardii* (Maheu) Samson et al^[3], *H. sinensis* Liu et al^[18], *H. stilbelliformis* var. *dolichoderi* H. C. Evans & Samson, *H. stilbelliformis* var. *stilbelliformis* H. C. Evans & Samson^[2], *H. sporodochialis* H. C. Evans & Samson^[3], *H. zhangjiajiensis* Z. Q. Liang^[4], *H. danubiensis* Bałazy

3 结论与讨论

Evans & Samson (1982, 1984)报道了一些具有

表 2 Gzuifr-hir140901 与近似种的形态特征比较 Table 2 A morphological comparison of Gzuifr-hir140901 with related species								
~!	产孢细胞				6 to 1 th			
种类	Conidiogenous cell			参考文献				
Species	形状	最大长度	类型	Conidia (µm)	References			
	Snape	Maxiength (µm)	Type	即亚 (15 25)	[10]			
Hirsutella aphidis petch	锥形	>40	в	船形 9×(1.5-2.5)	[13]			
H. besseyi Fisher	锥形或圆柱形	>40	В	椭圆形或柠檬形 (4.1-8.3)×(2.5-5.8)	[17]			
H. danubiensis Balazy et al	锥形	>60	В	橘瓣状(4.56.6)×(1.92.7)	[19]			
H. darwinii H. C. Evans & Samson	锥形	>40	В	梭形(4.5-11.5)×(1.5-2)	[3]			
H. guignardii (Maheu) Samson et al	锥形	>40	В	椭圆形或梭形 (7-13)×(4-6)	[2]			
H. sinensis Liu et al	锥形	>40	В	肾脏形或椭圆形 (5.4–1.4)×(3.2–5.4)	[18]			
H. sporodochialis H. C. Evans & Samson	基部膨大; 瓶形或 锥形	>80	A&B	梭形(10-27)×(3.5-4)	[2]			
<i>H. stilbelliformis</i> var. <i>stilbelliformis</i> H. C. Evans& Samson	基部膨大;椭圆形 有刺或锥形	>10 >100	A&B	棍棒状(7-9)×(1.5-2.5) 卵形的(8-12)×(4-5)	[3]			
H. stilbelliformis var. dolichoderi H. C. Evans & Samson	基部膨大;椭圆形 有刺或锥形	>40 >100	A&B	圆柱形到卵形 (6.5-9.5)×(3.5-4.5)	[3]			
H. vandergeestii Balazy et al	近似锥形, 底部较厚	>40	В	橋瓣状(4-) (4.2-5.5)×(2.1-2.5)(-3.0)	[19]			
H. zhangjiajiensis Z. Q. Liang	锥形或基部膨大; 椭圆形	>40	A&B	梭形或橘瓣状 (4.5-10)×(1.5-2.5)	[4]			
<i>Ophiocordyceps macroacicularis</i> S. Ban, T. Sakane & Nakagiri	近似锥形或 基部膨大			卵形到柠檬形				
		>40	-	平均(8.1×4.9) (通过图片比例尺测量)	[14]			
Gzuifr-hir140901	锥形;柱状	>40	A&B	橘瓣状或卵形 (8.1–10.8)×(2.7–5.4)	本文			

http://journals.im.ac.cn/wswxtbcn

et al, H. vandergeestii Bałazy et al^[19]。同时具有两型 瓶梗的种为 H. stilbelliformis var. stilbelliformis H. C. Evans & Samson, H. stilbelliformis var. dolichoderi H. C. Evans & Samson, H. sporodochialis H. C. Evans & Samson, H. zhangjiajiensis Z. Q. Liang 。 H. stilbelliformis var. stilbelliformis 和 H. stilbelliformis

var. dolichoderi 寄生膜翅目, H. zhangjiajiensis 寄生 蛹。目前都没有关于短小柱状瓶梗的报道。

系统发育树被广泛应用在分析、解释各级分类 阶元的系统学关系,但其不能展示物种在进化过程 中,杂交重组、基因水平转移和基因重复缺失等进 化事件。进化网络分析可以较好地解决这个问 题^[20],它能提供一个传统进化树不能展示的、被平 行事件掩盖的系统发育关系图像^[21-23]。根据分子系 统学(图 2)和系统进化(图 3)分析结果,菌株 Gzuifr-hirl4090 可能为巨针线形虫草 *O. macroacicularis*的无性阶段得到了很好的支持。经 过与巨针线形虫草文献[14]中的无性阶段形态比较 (表 2),二者基本相同。

综上所述,标本 Dxhir140901 及其分离菌株 Gzuifr-hir140901 确定为巨针线形虫草 *O. macroacicularis* S. Ban, T. Sakane & Nakagiri 的无性 阶段,为中国的新记录种。

参考文献

- Liang ZQ. Studies on classification of the genus *Hirsutella* Pat.
 I. Advances and the characteristics of taxonomy[J]. Journal of Guizhou Agriculture College, 1990, 9(1): 58-68 (in Chinese)
 梁宗琦. 被毛孢属(*Hirsutella* Pet.)的分类研究 I. 进展及分 类特征[J]. 贵州农学院学报, 1990, 9(1): 58-68
- [2] Evans HC, Samson RA. *Cordyceps* species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems II. The Camponotus (Formicinae) complex[J]. Transactions of the British Mycological Society, 1984, 82(1): 127-150
- [3] Evans HC, Samson RA. *Cordyceps* species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems I. The Cephalotes (Myrmicinae) complex[J]. Transactions of the British Mycological Society, 1982, 79(3): 431-453
- [4] Liang ZQ, Han YF, Liu AY, et al. Some entomogenous fungi from Wuyishan and Zhangjiajie Nature Reserves Three new species of the genus *Hirsutella*[J]. Mycotaxon, 2005, 94(5): 349-355
- [5] Zou X, Liu AY, Liang ZQ, et al. *Hirsutella liboensis*, a new entomopathogenic species affecting Cossidae (Lepidoptera) in China[J]. Mycotaxon, 2010, 111(1): 39-44

- [6] Kurihara Y, Shirouzu T, Tokumasu S, et al. *Hirsutella proturicola* sp. nov. isolated from a proturan, *Baculentulus densus* (Protura, Hexapoda)[J]. Mycoscience, 2009, 50(1): 56-62
- [7] Fang HM, Tan SM. A new species of *Hirsutella leizhouensis* Fang & Tan[J]. Mycosystema, 1992, 11(1): 28-31 (in Chinese) 方焕谋, 谭树明. 多毛孢属一个新种一雷州多毛孢[J]. 真菌 学报, 1992, 11(1): 28-31
- [8] Jaffee BA, Zehr EI. Parasitism of the nematode *Criconemella* xenoplax by the fungus *Hirsutella* rhossiliensis[J]. Phytopathology, 1982, 72(10): 1378-1381
- [9] Cayrol JC, Frankowski JP. Influence of the number of parasitizing conidia of *Hirsutella rhossiliensis* on the mortality of *Ditylenchus dipsaci*[J]. Revue de Nématologie, 1986, 9(4): 411-412
- [10] Hall DG, Hentz MG, Meyer JM, et al. Observations on the entomopathogenic fungus *Hirsutella citriformis* attacking adult *Diaphorina citri* (Hemiptera: Psyllidae) in a managed citrus grove[J]. BioControl, 2012, 57(5): 663-675
- [11] Sung GH, Hywel-Jones NL, Sung JM, et al. Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi[J]. Studies in Mycology, 2007, 57: 5-59
- [12] Isaka M, Hywel-Jones NL, Somrithipol S, et al. Antituberculosis compounds, Hirsutellones A, B, and C: U. S. Patent 7, 414, 069[P]. 2008-8-19
- [13] Thongtan J, Saenboonrueng J, Rachtawee P, et al. An antimalarial tetrapeptide from the entomopathogenic fungus *Hirsutella* sp. BCC1528[J]. Journal of Natural Products, 2006, 69(4): 713-714
- [14] Ban S, Sakane T, Nakagiri A. Three new species of *Ophiocordyceps* and overview of anamorph types in the genus and the family Ophiocordyceptaceae[J]. Mycological Progress, 2015, 14(1): 1-12
- [15] Tigano-Milani MS, Samson RA, Martins I, et al. DNA markers for differentiating isolates of *Paecilomyces lilacinus*[J]. Microbiology, 1995, 141(1): 239-245
- [16] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment[J]. Briefings in Bioinformatics, 2004, 5(2): 150-163
- [17] Minter DW, Brady BL, Hall RA. Five hyphomycetes isolated from *Eriophyid mites*[J]. Transactions of the British Mycological Society, 1983, 81(3): 455-471
- [18] Liu XJ, Guo YL, Yu YX, et al. Isolation and identification of the anamorphic state of *Cordyceps sinensis* (Berk.) Sacc[J]. Mycosystema, 1989, 8(1): 35-40 (in Chinese) 刘锡琏, 郭英兰, 俞永信, 等. 冬虫夏草菌无性阶段的分离 和鉴定[J]. 真菌学报, 1989, 8(1): 35-40
- [19] Bałazy S, Miętkiewski R, Tkaczuk C, et al. Diversity of acaropathogenic fungi in Poland and other European countries[J]. Experimental and Applied Acarology, 2008, 46(1/4): 53-70
- [20] Morrison DA. Phylogenetic networks: a review of methods to display evolutionary history[J]. Annual Research & Review in Biology, 2014, 4(10): 1518-1543
- [21] Bandelt HJ, Dress AWM. Split decomposition: a new and useful approach to phylogenetic analysis of distance data[J]. Molecular Phylogenetics and Evolution, 1992, 1(3): 242-252
- [22] Morrison DA. Networks in phylogenetic analysis: new tools for population biology[J]. International Journal for Parasitology, 2005, 35(5): 567-582
- [23] Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies[J]. Molecular Biology and Evolution, 2006, 23(2): 254-267

http://journals.im.ac.cn/wswxtbcn