科微学术

微生物学通报

一株嗜盐嗜碱菌属促生菌的分离及功能鉴定
作者:
基金项目:

南疆重点产业创新发展支撑计划(2022DB026);新疆维吾尔自治区重点研发专项(2022B02019)


Isolation and functional identification of a growth-promoting rhizobacterial strain of Alkalibacterium
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】土壤盐碱化是一个全球性问题,耐盐植物根际存在大量未被开发的功能微生物,例如植物根际促生菌(plant growth-promoting rhizobacteria, PGPR)。这些微生物能够通过自身的促生功能帮助植物抵抗盐碱胁迫并促进植物生长。【目的】筛选出具有耐盐碱作用的PGPR,研究其促生功能,为研发盐碱地专用功能性微生物肥料提供候选菌株。【方法】从新疆维吾尔自治区喀什地区野生柽柳根际土壤中筛选出一株耐盐碱细菌Bachu49;通过形态学、生理生化特性和16S rRNA基因测序技术对其进行分类鉴定;利用多种功能鉴定培养基测定菌株Bachu49的解钾、固氮、解磷、吲哚乙酸合成、1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate, ACC)脱氨酶和铁载体合成等促生能力;采用二分格培养皿验证菌株Bachu49产生挥发性酸性物质的能力;最后分别通过平皿和盆栽试验测定菌株对拟南芥和玉米幼苗生长的影响。【结果】从供试土壤样品中筛选分离到一株耐盐碱菌株Bachu49,经16S rRNA基因序列比对分析鉴定为嗜盐嗜碱菌属(Alkalibacterium);菌株Bachu49拥有固氮、解有机磷和分泌吲哚乙酸(indole-3-acetic acid,IAA)等促生能力,可在盐浓度0−160 g/L、pH 7.0−11.0的条件下生长,该菌还具有一定的降碱能力。在pH 8.0、9.0和10.0的条件下,降碱率分别为9.75%、15.56%和20.60%。促生试验结果表明菌株Bachu49可以显著促进拟南芥、玉米在盐碱胁迫条件下的生长。其中,在pH 8.0、2 mmol/L NaHCO3的盐碱胁迫条件下,接种了菌株Bachu49后拟南芥的根长、侧根数目、鲜重和叶片数分别增加了239.86%、1 952.83%、389.71%和91.23%;在15 g/kg的盐胁迫条件下,玉米的地下鲜重增加了10.14%,而在30 g/kg的盐碱胁迫条件下,玉米的地上鲜重、茎粗和株高分别增加了42.04%、23.14%和40.91%。【结论】Alkalibacterium sp. Bachu49具有优良的耐盐碱与促生能力,能够显著促进植物在盐碱胁迫下的生长,这为今后在研发盐碱地专用功能型微生物肥料方面提供了菌种资源和理论基础。

    Abstract:

    [Background] Soil salinization is a global problem, and there are a large number of undeveloped functional microorganisms in the rhizosphere of salt tolerant plants, such as plant growth-promoting rhizobacteria (PGPR). These microorganisms can help plants resist salt alkali stress and promote plant growth through their own growth promoting functions. [Objective] This study screened plant growth-promoting rhizobacteria (PGPR) with salt-alkali tolerance and evaluated their growth-promoting effects, aiming to provide candidate strains for the development of microbial fertilizers for saline-alkaline land. [Methods] A bacterial strain Bachu49 with salt-alkali tolerance was isolated from the rhizosphere soil of wild Tamarix chinensis in Kashgar Prefecture of Xinjiang. This strain Bachu49was identified based on morphological, physiological, and biochemical characteristics and 16S rRNA gene sequence. Multiple media for functional identification were used to examine the growth-promoting effects [solubilizing potassium, fixing nitrogen, solubilizing phosphorus, synthesizing indole-3-acetic acid (IAA), secreting 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and producing siderophores] of Bachu49. The Petri dish with two compartments was used to examine the production of volatile acid substances by Bachu49. Finally, the effects of Bachu49 on the growth of Arabidopsis and maize seedlings were analyzed by plate and pot experiments, respectively. [Results] A strain Bachu49 with salt-alkali tolerance was isolated from the soil samples. This strain was identified as Alkalibacterium sp. and named Alkalibacterium sp. Bachu49. Strain Bachu49 had the effects of fixing nitrogen, solubilizing organic phosphorus, and synthesizing IAA. It survived within the salt concentration of 0−160 g/L and pH 7.0−11.0 and showed the ability of reducing alkali. At pH 8.0, 9.0, and 10.0, the alkali reduction rates of Bachu49 were 9.75%, 15.56%, and 20.60%, respectively. Strain Bachu49 promoted the growth of Arabidopsis and maize seedlings under salt-alkali stress. Specifically, at pH 8.0 and 2 mmol/L NaHCO3, inoculation with strain Bachu49 increased the root length, number of lateral roots, fresh weight, and number of leaves of Arabidopsis by 239.86%, 1 952.83%, 389.71%, and 91.23%, respectively. Inoculation of this strain increased the underground fresh weight of maize seedlings by 10.14% in the presence of 15 g/kg salt-alkali, and it increased the aboveground fresh weight, stem diameter, and plant height of maize seedlings by 42.04%, 23.14%, and 40.91%, respectively, under 30 g/kg salt-alkali stress. [Conclusion] Alkalibacterium sp. Bachu49 has excellent salt-alkali tolerance and plant-growth promoting effects under salt-alkali stress. This study provides a candidate strain and a theoretical basis for the future development of specialized microbial fertilizers for saline-alkali soil.

    参考文献
    [1] ZHU JK. Plant salt tolerance[J]. Trends in Plant Science, 2001, 6(2): 66-71.
    [2] 边荣荣, 孙兆军, 李向辉, 李惠军. 西北盐碱地改良利用技术研究现状及展望[J]. 宁夏工程技术, 2016, 15(4): 404-408. BIAN RR, SUN ZJ, LI XH, LI HJ. Present situation and prospect of improvement and utilization of saline-alkali land in Northwest[J]. Ningxia Engineering Technology, 2016, 15(4): 404-408(in Chinese).
    [3] 贾壮壮, 谭亚男, 管孝艳, 王忠静, 陶园. 宁夏盐碱地成因及分区治理措施综述[J]. 灌溉排水学报, 2023, 42(5): 122-134. JIA ZZ, TAN YN, GUAN XY, WANG ZJ, TAO Y. Saline-alkali soil formation and its remediation strategies in different regions of Ningxia: a comprehensive review[J]. Journal of Irrigation and Drainage, 2023, 42(5): 122-134(in Chinese).
    [4] 朱生堡, 乌尔古丽·托尔逊, 唐光木, 张云舒, 徐万里, 马海刚. 新疆盐碱地变化及其治理措施研究进展[J]. 山东农业科学, 2023, 55(3): 158-165. ZHU SB, Wuerguli·Tuoerxun, TANG GM, ZHANG YS, XU WL, MA HG. Research progress on saline-alkali land changes and its treatment measures in Xinjiang[J]. Shandong Agricultural Sciences, 2023, 55(3): 158-165(in Chinese).
    [5] 邵华伟, 孙九胜, 胡伟, 王新勇, 罗广华. 新疆盐碱地分布特点和成因及改良利用技术研究进展[J]. 黑龙江农业科学, 2014(11): 160-164. SHAO HW, SUN JS, HU W, WANG XY, LUO GH. Research progress on distribution characteristics, causes and improved utilization technology of saline-alkali land in Xinjiang[J]. Heilongjiang Agricultural Sciences, 2014(11): 160-164(in Chinese).
    [6] 阿孜古力·库尔班, 王洁, 马无为, 谢滔, 张伟. 新疆盐碱土壤中克百威降解菌群结构解析及降解菌株特性[J]. 西北农业学报, 2023, 32(10): 1616-1626. Aziguli·Kuerban, WANG J, MA WW, XIE T, ZHANG W. Structure analysis of carbofuran degrading bacterial flora and characteristics of degrading strains in saline alkali soil of Xinjiang[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2023, 32(10): 1616-1626(in Chinese).
    [7] 胡炎, 杨帆, 杨宁, 贾伟, 崔勇. 盐碱地资源分析及利用研究展望[J]. 土壤通报, 2023, 54(2): 489-494. HU Y, YANG F, YANG N, JIA W, CUI Y. Analysis and prospects of saline-alkali land in China from the perspective of utilization[J]. Chinese Journal of Soil Science, 2023, 54(2): 489-494(in Chinese).
    [8] MACHADO R, SERRALHEIRO R. Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2): 30.
    [9] 王明睿, 杨升, 刘星, 陈秋夏. 盐胁迫下植物根系特征及其微生物的互作关系[J]. 世界林业研究, 2023, 36(4): 22-27. WANG MR, YANG S, LIU X, CHEN QX. Root characteristics of plants under salt stress and their interactions with microorganisms[J]. World Forestry Research, 2023, 36(4): 22-27(in Chinese).
    [10] 张翼夫, 李问盈, 胡红, 陈婉芝, 王宪良. 盐碱地改良研究现状及展望[J]. 江苏农业科学, 2017, 45(18): 7-10. ZHANG YF, LI WY, HU H, CHEN WZ, WANG XL. Present situation and prospect of saline-alkali land improvement research[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 7-10(in Chinese).
    [11] 林学政, 沈继红, 刘克斋, 黄晓航. 种植盐地碱蓬修复滨海盐渍土效果的研究[J]. 海洋科学进展, 2005, 23(1): 65-69. LIN XZ, SHEN JH, LIU KZ, HUANG XH. Study on remediation effects of Suaeda salsa L. planting on coastal saline soil[J]. Advances in Marine Science, 2005, 23(1): 65-69(in Chinese).
    [12] 侯晖, 龚佳, 谢沁宓, 赵宏亮, 程昊, 王芳, 倪细炉. 宁夏4种耐盐植物对根际土壤养分及微生物功能多样性的影响[J]. 西北林学院学报, 2023, 38(4): 61-73. HOU H, GONG J, XIE QM, ZHAO HL, CHENG H, WANG F, NI XL. Effects of four salt-tolerant plants on rhizosphere soil nutrients and microbial functional diversity in Ningxia[J]. Journal of Northwest Forestry University, 2023, 38(4): 61-73(in Chinese).
    [13] 李海英, 彭红春, 牛东玲, 王启基. 生物措施对柴达木盆地弃耕盐碱地效应分析[J]. 草地学报, 2002, 10(1): 63-68. LI HY, PENG HC, NIU DL, WANG QJ. Analysis of the effect of biomeasures on discarded salkaline land in chidamu basin[J]. Acta Agrestia Sinica, 2002, 10(1): 63-68(in Chinese).
    [14] ORHAN F. Potential of halophilic/halotolerant bacteria in enhancing plant growth under salt stress[J]. Current Microbiology, 2021, 78(10): 3708-3719.
    [15] 姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2019, 35(10): 189-197. JIANG HH, WANG T, CHEN N, YU SL, CHI XY, WANG M, QI PS. Research progress in PGPR improving plant’s resistance to salt and alkali[J]. Biotechnology Bulletin, 2019, 35(10): 189-197(in Chinese).
    [16] QIN Y, DRUZHININA IS, PAN XY, YUAN ZL. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1245-1259.
    [17] VIMAL SR, SINGH JS, ARORA NK, SINGH S. Soil-plant-microbe interactions in stressed agriculture management: a review[J]. Pedosphere, 2017, 27(2): 177-192.
    [18] 梁洪榜, 赵丽, 周云鹏, 刘畅, 和婧, 匡乃昆, 李云开. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响: 基于Meta分析[J]. 土壤, 2022, 54(6): 1257-1264. LIANG HB, ZHAO L, ZHOU YP, LIU C, HE J, KUANG NK, LI YK. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land: a meta-analysis[J]. Soils, 2022, 54(6): 1257-1264(in Chinese).
    [19] GIRVAN MS, BULLIMORE J, PRETTY JN, MARK OSBORN A, BALL AS. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Applied and Environmental Microbiology, 2003, 69(3): 1800-1809.
    [20] 郭伟, 薛帅, 张哲超, 刁风伟, 胡杰, 张敏, 刘美淳, 丁胜利, 贾冰冰, 史中奇. 生物技术修复盐碱化草地研究进展[J]. 生物技术通报, 2020, 36(7): 200-208. GUO W, XUE S, ZHANG ZC, DIAO FW, HU J, ZHANG M, LIU MC, DING SL, JIA BB, SHI ZQ. Research progress on bioremediation of saline-alkali grassland: a review[J]. Biotechnology Bulletin, 2020, 36(7): 200-208(in Chinese).
    [21] NAKAJIMA K, HIROTA K, NODASAKA Y, YUMOTO I. Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(Pt 4): 1525-1530.
    [22] 张立华, 陈小兵. 盐碱地柽柳“盐岛” 和“肥岛” 效应及其碳氮磷生态化学计量学特征[J]. 应用生态学报, 2015, 26(3): 653-658. ZHANG LH, CHEN XB. Characteristics of ‘salt island’and ‘fertile island’ for Tamarix chinensis and soil carbon, nitrogen and phosphorus ecological stoichiometry in saline-alkali land[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 653-658(in Chinese).
    [23] 韩玉竹, 赵建军, 曾兵, 明晓燕, 朱全伟. 多花黑麦草根际解磷菌的分离及解磷能力测定[J]. 草地学报, 2011, 19(5): 766-770. HAN YZ, ZHAO JJ, ZENG B, MING XY, ZHU QW. Isolation and the phosphate solubilizing capacity of Italian ryegrass rhizosphere phosphate-solubilizing microorganism[J]. Acta Agrestia Sinica, 2011, 19(5): 766-770(in Chinese).
    [24] 白变霞, 陈艳彬, 任嘉红. 蜡状芽孢杆菌CLY07菌株的解有机磷特性研究[J]. 西南林业大学学报, 2016, 36(4): 75-81. BAI BX, CHEN YB, REN JH. Study on organophosphate-solubilizing characteristics of Bacillus cereus CLY07[J]. Journal of Southwest Forestry University, 2016, 36(4): 75-81(in Chinese).
    [25] 曹晶晶, 熊悯梓, 钞亚鹏, 赵盼, 汪志琴, 仲乃琴. 极耐盐碱固氮菌的分离鉴定及固氮特性研究[J]. 微生物学报, 2021, 61(11): 3483-3495. CAO JJ, XIONG MZ, (CHAO/MIAO) YP, ZHAO P, WANG ZQ, ZHONG NQ. Isolation and identification of extremely salt-tolerant azotobacter and its nitrogen-fixing characteristics[J]. Acta Microbiologica Sinica, 2021, 61(11): 3483-3495(in Chinese).
    [26] 黄伟. 杉木根际解磷菌、解钾菌筛选及其培养条件优化的研究[D]. 福州: 福建农林大学硕士学位论文, 2016. HUANG W. Study on selection and culture optimization of phosphate-solubilizing bacteria and potassium-releasing bacteria in rhizosphere of cunninghaimia Lanceolata[D]. Fuzhou: Master’s Thesis of儠??????删??婲??乵????????佤??塯???佴乲??奕???啥?乳???夬?′地?丶??????剩敮獥敳慥爩挮格?灲爾潛朲爷敝猠珦?澛測?杗爼漬眠瓘棼?瀠狡潷淕漬琠榐湶本?浨敉挅栬愠湙槺獉洮?意溦撅?懺瀮烌氆榻揊慶瑁楃潃渱?潶晋?灛汊慝渮琠?柽犜漚矑瑦栬?瀲爰漱洲漬琠椴渵木?爩栺椠稱漰戶愶挭琱攰爷椳愮嬠?嵉???潊甬爠湌慕汏?潑昬??杁牏椠捍甬氠瑈畕爠慈汙?匠捘楕攠湊挬攠?慈湏摕?呙救挬栠湓潕汎漠杊祇???び?????佯?????????ぴ??橮?湯祰歨橹摴扩?㈠つ???は????楨湳??桮楤渠敤獥整??mination of 1-aminocyclopropane-1-carboxylate deaminase[J]. Scientia Agricultura Sinica, 2012, 45(6): 1066-1073(in Chinese).
    [28] 周贝贝. 植物根际促生菌的筛选及其在草莓上的应用研究[D]. 泰安: 山东农业大学硕士学位论文, 2018. ZHOU BB. Screening of plant growth-promoting rhizobacteria and its application in strawberry[D]. Tai’an: Master’s Thesis of Shandong Agricultural University, 2018(in Chinese).
    [29] 蔡妙英, 东秀珠. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. CAI MY, DONG XZ. Handbook for Identification of Common Bacterial Systems[M]. Beijing: Science Press, 2001(in Chinese).
    [30] 孙雪, 董永华, 王娜, 崔文会, 廖鲜艳, 刘莉. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(7): 1356-1364. SUN X, DONG YH, WANG N, CUI WH, LIAO XY, LIU L. Screening and evaluation of saline-alkali- tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1356-1364(in Chinese).
    [31] 张小霞, 陈筱玥, 王秋云, 张国只, 杨新平, 代金平, 梁振普. 柽柳根际一株盐单胞菌Bachu 26的分离、鉴定及其盐胁迫下的促生作用研究[J]. 微生物学报, 2024, 64(2): 607-622. ZHANG XX, CHEN XY, WANG QY, ZHANG GZ, YANG XP, DAI JP, LIANG ZP. Isolation and identification of Halomonas sp. Bachu 26 with plant growth-promoting effect from rhizosphere of Tamarix chinensis under salt stress[J]. Acta Microbiologica Sinica, 2024, 64(2): 607-622(in Chinese).
    [32] ISHIKAWA M, TANASUPAWAT S, NAKAJIMA K, KANAMORI H, ISHIZAKI S, KODAMA K, OKAMOTO-KAINUMA A, KOIZUMI Y, YAMAMOTO Y, YAMASATO K. Alkalibacterium thalassium sp. nov., Alkalibacterium pelagium sp. nov., Alkalibacterium putridalgicola sp. nov. and Alkalibacterium kapii sp. nov., slightly halophilic and alkaliphilic marine lactic acid bacteria isolated from marine organisms and salted foods collected in Japan and Thailand[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(5): 1215-1226.
    [33] 周萌, 张嘉俊, 罗洋. 微生物肥料的作用机理、现状及展望[J]. 中国农学通报, 2023, 39(33): 68-75. ZHOU M, ZHANG JJ, LUO Y. The mechanism, current status and prospects of microbial fertilizers[J]. Chinese Agricultural Science Bulletin, 2023, 39(33): 68-75(in Chinese).
    [34] 焦松林, 欧阳湖, 刘浪, 祝钲洋, 周东海. 植物根际促生菌对药用植物生长影响的研究进展[J]. 现代医药卫生, 2024, 40(2): 316-320. JIAO SL, OUYANG H, LIU L, ZHU ZY, ZHOU DH. Research progress on the effects of Plant growth-promoting rhizobacteria on the growth of medicinal plants[J]. Journal of Modern Medicine & Health, 2024, 40(2): 316-320(in Chinese).
    [35] 高雅新, 王甲果, 张翔凯, 李驰, 马磊, 刘东阳, 沈其荣. 高产IAA哈茨木霉突变株M95的筛选及其对黄瓜的促生作用[J]. 南京农业大学学报, 2023, 46(3): 499-509. GAO YX, WANG JG, ZHANG XK, LI C, MA L, LIU DY, SHEN QR. Screening of mutant Trichoderma harzianum M95 with high IAA yield and its growth promotion effect on cucumber[J]. Journal of Nanjing Agricultural University, 2023, 46(3): 499-509(in Chinese).
    [36] CASSÁN F, VANDERLEYDEN J, SPAEPEN S. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum[J]. Journal of Plant Growth Regulation, 2014, 33(2): 440-459.
    [37] 付学鹏, 沈童飞, 孙晓波, 刘晓涵, 杨晓杰. 链霉菌株Streptomyces sp. FXP04对水稻种子萌发和幼苗生长的影响[J]. 作物杂志, 2020(6): 163-169. FU XP, SHEN TF, SUN XB, LIU XH, YANG XJ. Effects of Streptomyces sp. FXP04 on seed germination and seedling growth of rice[J]. Crops, 2020(6): 163-169(in Chinese).
    [38] DIN M, NELOFER R, SALMAN M, Abdullah, KHAN FH, KHAN A, AHMAD M, JALIL F, DIN JU, KHAN M. Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus[J]. Biotechnology Reports, 2019, 22: e00323.
    [39] VELMOUROUGANE K, PRASANNA R, CHAWLA G, NAIN L, KUMAR A, SAXENA AK. Trichoderma- Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton[J]. Journal of Basic Microbiology, 2019, 59(6): 632-644.
    [40] MEENA VS, BAHADUR I, MAURYA BR, KUMAR A, MEENA RK, MEENA SK, VERMA JP. Potassium-solubilizing microorganism in evergreen agriculture: an overview[M]//Potassium Solubilizing Microorganisms for Sustainable Agriculture. New Delhi: Springer, 2016: 1-20.
    [41] QUIQUAMPOIX H, MOUSAIN D. Enzymatic hydrolysis of organic phosphorus[M]//Organic phosphorus in the environment. UK: CABI Publishing, 2004: 89-112.
    [42] GOUDA S, KERRY RG, DAS G, PARAMITHIOTIS S, SHIN HS, PATRA JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 2018, 206: 131-140.
    [43] 张鹏鹏. 几株植物根际促生细菌释放的挥发性物质对拟南芥及病原菌的影响[D]. 泰安: 山东农业大学硕士学位论文, 2013. ZHANG PP. Effects of some plant growth-promoting rhizobacteria volatiles on Arabidopsis and antagonistic properties[D]. Tai’an: Master’s Thesis of Shandong Agricultural University, 2013(in Chinese).
    [44] RYU CM, FARAG MA, HU CH, REDDY MS, WEI HX, PARÉ PW, KLOEPPER JW. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4927-4932.
    [45] 徐云龙, 周游, 汪军, 郭立佳, 黄俊生, 杨腊英. 一株自生固氮菌的分离鉴定及其对不同品种香蕉的促生特性[J]. 热带作物学报, 2024, 45(5): 936-943. XU YL, ZHOU Y, WANG J, GUO LJ, HUANG JS, YANG LY. Isolation and identification of a nitrogen fixing bacteria and its growth promoting characteristics on different banana varieties[J]. Chinese Journal of Tropical Crops, 2024, 45(5): 936-943(in Chinese).
    [46] 蔺宝珺, 杨文权, 赵帅, 柴港宁, 鱼杨华, 武燕茹, 韩显忠, 李希来, 寇建村. 高寒草甸植物根际溶磷菌的筛选鉴定及其溶磷与促生效果[J]. 草地学报, 2022, 30(11): 3132-3139. LIN BJ, YANG WQ, ZHAO S, CHAI GN, YU YH, WU YR, HAN XZ, LI XL, KOU JC. Screening and identification of phosphate-solubilizing bacteria in plant rhizosphere of alpine meadow and their effects on phosphate-solubilizing and plant growth promotion[J]. Acta Agrestia Sinica, 2022, 30(11): 3132-3139(in Chinese).
    [47] 马雪晴, 冀傲冉, 郑娇莉, 曹春霞, 龚艳, 黄大野, 王蓓蓓. 植物根际促生菌促生机制及其应用研究进展[J]. 中国农业科技导报, 2023. DOI: 10.13304/j. nykjdb.2023.0654. MA X
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张小霞,王一,苏萍,杨新平,代金平,梁振普. 一株嗜盐嗜碱菌属促生菌的分离及功能鉴定[J]. 微生物学通报, 2024, 51(11): 4617-4632

复制
分享
文章指标
  • 点击次数:135
  • 下载次数: 223
  • HTML阅读次数: 205
  • 引用次数: 0
历史
  • 收稿日期:2024-02-20
  • 录用日期:2024-06-25
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码