科微学术

微生物学通报

耐盐碱解磷菌的溶磷效果及其对黄豆萌发的影响
作者:
基金项目:

国家自然科学基金(52169007);甘肃农业大学"伏羲青年英才"项目(Gaufx-03Y10);甘肃省水利科学试验研究与技术推广计划(24GSLK060)


Phosphorus solubilization effect of saline-tolerant phosphorus-solubilizing bacteria and its effect on soybean germination
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】土壤中能够供植物直接吸收利用的磷含量较少,而传统施用磷肥的方式会导致环境污染,并破环土壤结构和功能等问题。【目的】研究巨大芽孢杆菌(Bacillus megaterium)和雷氏普罗威登斯菌(Providencia rettgeri)的耐盐性、溶磷机制及其对黄豆种子萌发的影响,为植物根际盐碱土壤接种定殖及促生效果奠定坚实的基础,以期通过根际土壤解磷菌的解磷作用来解决作物缺磷问题。【方法】结合接种针点接法、平板法、液体培养法及发芽盒发芽等试验,剖析了2株解磷菌的耐盐碱性、溶磷效果及其对黄豆萌发的促进效应。【结果】巨大芽孢杆菌和雷氏普罗威登斯菌分别在盐浓度为0−10%、0−6%的范围及pH值为7.0−12.0的环境下均可以生长;巨大芽孢杆菌和雷氏普罗威登斯菌在平板上的D/d值分别达到2.17和2.05,第4天于液体培养基中溶磷量达到峰值,分别为355.53 mg/L和272.17 mg/L,培养介质pH值由7.5分别降至4.61和4.81。巨大芽孢杆菌和雷氏普罗威登斯菌溶磷效果随NaCl浓度的增大均呈现“先略增强后持续减弱”的趋势,pH值均呈现“先略减小后持续增大”的趋势,NaCl浓度分别为0.4 mol/L和0.2 mol/L时溶磷效果最好,溶磷量达到峰值364.35 mg/L和285.58 mg/L,培养介质的pH值降至最小值4.28和4.73。巨大芽孢杆菌和雷氏普罗威登斯菌对种子发芽率及胚轴、胚根的伸长均有提高,在正常环境和NaCl处理环境下,与对照组相比,经2种菌液浸泡后黄豆的平均发芽率、胚轴及胚根平均增长率分别为2.70%、10.10%、9.00%和5.40%、19.40%、20.30%。【结论】2株菌均具有较强的耐盐性和溶磷效果,能促进种子萌发,可以进一步为解磷菌的接种及应用提供理论依据。

    Abstract:

    [Background] The amount of phosphorus available for direct absorption and utilization by plants in the soil is limited, and the traditional methods of applying phosphorus fertilizer can lead to environmental pollution and problems such as damage to soil structure and function. [Objective] This study aimed to investigate the salt tolerance and phosphorus solubilization mechanism of Bacillus megaterium and Providencia rettgeri and their effects on soybean seed germination, to lay a solid foundation for inoculation and colonization of plant rhizosphere in saline-alkali soil. The problem of phosphorus deficiency in crops is expected to be solved through the phosphorus-solubilization effect of phosphorus-solubilizing bacteria in rhizosphere soil. [Methods] The inoculation with needlepoint, plate method, liquid culture method, and box germination experiment were conducted to analyze the salt-alkali tolerance, phosphorus-solubilization effect, and promotion effect on soybean germination of two phosphorus-solubilizing bacteria strains. [Results] Both B. megaterium and P. rettgeri could grow in environments with salt concentrations ranging from 0−10% and 0−6%, and pH values ranging from 7.0 to 12.0. The D/d values of B. megaterium and P. rettgeri on plates reached 2.17 and 2.05, respectively. The value of dissolved phosphorus in the liquid medium reached a peak on the 4th day, which were 355.53 and 272.17 mg/L, respectively, and the pH value of the culture medium decreased from 7.5 to 4.61 and 4.81, respectively. The phosphorus solubilization effect of B. megaterium and P. rettgeri showed a trend of “slightly increasing at first and then continuously decreasing” with the increase of NaCl concentration, and the pH value showed a trend of “slightly decreasing at first and then continuously increasing”. The best phosphorus solubilization effects were observed at NaCl concentrations of 0.4 and 0.2 mol/L, respectively, with the peak solubilization value of 364.35 and 285.58 mg/L, and the pH value of the culture medium decreased to the minimum value of 4.28 and 4.73, respectively. B. megaterium and P. rettgeri both increased the germination rate of seeds and elongation of the embryonic axis and radicle. Compared with the control group, in normal environments, the average germination rate, and the embryonic axis and radicle elongation rate of soybeans after soaking in the two bacterial solutions were 2.70%, 10.10% and 9.00%; in NaCl-treated environments, the corresponding value were 5.40%, 19.40% and 20.30%. [Conclusion] Both strains have strong salt tolerance and phosphorus solubilization effect and can promote seed germination, providing a theoretical basis for the inoculation and application of phosphorus-solubilizing bacteria.

    参考文献
    [1] 杜雷, 王素萍, 陈钢, 洪娟, 黄翔, 张利红, 叶莉霞, 练志诚, 张贵友. 一株高效解磷细菌的筛选、鉴定及其溶磷能力的研究[J]. 中国土壤与肥料, 2017(3): 136-141. DU L, WANG SP, CHEN G, HONG J, HUANG X, ZHANG LH, YE LX, LIAN ZC, ZHANG GY. Isolation and identidication of efficient phosphate-solubilizing bacterial strain and its phosphate-solubilizing capacity[J]. Soil and Fertilizer Sciences in China, 2017(3): 136-141(in Chinese).
    [2] SCHMIDT JJ, GAGNON GA, JAMIESON RC. Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions[J]. Ecological Engineering, 2016, 95: 588-593.
    [3] 王松, 张小凡. 解磷菌株YR-P31的分离、鉴定、生物学特性及其促生作用[J]. 中国土壤与肥料, 2022(12): 206-212. WANG S, ZHANG XF. Isolation, identification, biological characteristic of phosphate-solubilizing bacterial strain YR-P31 and its growth promoting effect[J]. Soil and Fertilizer Sciences in China, 2022(12): 206-212(in Chinese).
    [4] ZHAO DY, DING YQ, CUI YR, ZHANG YN, LIU K, YAO LT, HAN XB, PENG YL, GOU JY, DU BH, WANG CQ. Isolation and genome sequence of a novel phosphate-solubilizing rhizobacterium Bacillus altitudinis GQYP101 and its effects on rhizosphere microbial community structure and functional traits of corn seedling[J]. Current Microbiology, 2022, 79(9): 249.
    [5] WALPOLA B, YOON MH. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake[J]. African Journal of Microbiology Research, 2013, 7: 266-275.
    [6] BELTRAN-MEDINA I, ROMERO-PERDOMO F, MOLANO-CHAVEZ L, GUTIÉRREZ AY, SILVA AMM, ESTRADA-BONILLA G. Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity[J]. Nutrient Cycling in Agroecosystems, 2023, 126(1): 21-34.
    [7] 贺梦醒, 高毅, 胡正雪, 徐瑶, 龙瑞, 孙庆业. 解磷菌株B25的筛选、鉴定及其解磷能力[J]. 应用生态学报, 2012, 23(1): 235-239. HE MX, GAO Y, HU ZX, XU Y, LONG R, SUN QY. Screening, identification, and phosphate-solubilizing capability of phosphate-solubilizing bacterial strain B25[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 235-239(in Chinese).
    [8] PODILE AR, KISHORE GK. Plant growth-promoting rhizobacteria[M]//Plant-Associated Bacteria. Dordrecht: Springer, 2007: 195-230.
    [9] KHOURCHI S, ELHAISSOUFI W, LOUM M, IBNYASSER A, HADDINE M, GHANI R, BARAKAT A, ZEROUAL Y, RCHIAD Z, DELAPLACE P, BARGAZ A. Phosphate solubilizing bacteria can significantly contribute to enhance P availability from polyphosphates and their use efficiency in wheat[J]. Microbiological Research, 2022, 262: 127094.
    [10] PAHALVI HN, RAFIYA L, RASHID S, NISAR B, KAMILI AN. Chemical fertilizers and their impact on soil health[M]//Microbiota and Biofertilizers, Vol 2. Cham: Springer, 2021: 1-20.
    [11] WANG ZH, ZHANG HH, LIU L, LI SJ, XIE JF, XUE X, JIANG Y. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion[J]. BMC Microbiology, 2022, 22(1): 296.
    [12] 王宏燕, 韩凯鑫, 冯丽荣, 于志鹏, 王露, 范金霞, 章圣龙, 孙岩. 耐盐解磷菌筛选鉴定及生理特性研究[J]. 东北农业大学学报, 2023, 54(5): 28-37. WANG HY, HAN KX, FENG LR, YU ZP, WANG L, FAN JX, ZHANG SL, SUN Y. Screening and identification of salt-resistant phosphorus bacteria and its physiological characteristics[J]. Journal of Northeast Agricultural University, 2023, 54(5): 28-37(in Chinese).
    [13] 郭世乾, 崔增团, 傅亲民. 甘肃省盐碱地现状及治理思路与建议[J]. 中国农业资源与区划, 2013, 34(4): 75-79. GUO SQ, CUI ZT, FU QM. Idea and suggestions on saline-alkali soil status quo and managements in Gansu Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2013, 34(4): 75-79(in Chinese).
    [14] Stalstrom VA. Beitrag Zur Kenntrusder einwinsking sterilizer and in garung befindlieher striffe any dilloslies hkeit der phosphorus are destrical cum phosphours[J]. Zbt Bakt Abt II, 1903, 11: 724-732.
    [15] 李娟, 王文丽, 卢秉林. 解磷微生物菌剂对油菜生长及产量的影响[J]. 中国土壤与肥料, 2010(3): 67-69. LI J, WANG WL, LU BL. Effect of phosphate- solubilizing microorganism agent on the growth and yield of oilseed rape[J]. Soil and Fertilizer Sciences in China, 2010(3): 67-69(in Chinese).
    [16] 蒋欣梅, 夏秀华, 于锡宏, 倪淑君, 张树春. 微生物解磷菌肥对大棚茄子生长及土壤有效磷利用的影响[J]. 浙江大学学报(理学版), 2012, 39(6): 685-688. JIANG XM, XIA XH, YU XH, NI SJ, ZHANG SC. Effect of phosphorus-dissolving microbes fertilizer on growth of eggplant and utilization of available phosphorus in soil in the vinyl tunnel[J]. Journal of Zhejiang University (Science Edition), 2012, 39(6): 685-688(in Chinese).
    [17] 韩凯鑫. 耐盐解磷菌筛选及对土壤细菌群落结构的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2023. HAN KX. Screening of salinity-tolerant phosphorus bacteria and their effects on soil bacterial community structure[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2023(in Chinese).
    [18] 江红梅, 殷中伟, 史发超, 刘彩月, 程明芳, 范丙全. 一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果[J]. 植物营养与肥料学报, 2018, 24(3): 728-742. JIANG HM, YIN ZW, SHI FC, LIU CY, CHENG MF, FAN BQ. Isolation and functional evaluation of phosphate-solubilizing fungi with salt-tolerant characteristics[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 728-742(in Chinese).
    [19] CUI Y, ZHAO YJ, CAI R, ZHOU H, CHEN JX, FENG LR, GUO CH, WANG D. Isolation and identification of a phosphate-solubilizing Pantoea dispersa with a saline-alkali tolerance and analysis of its growth-promoting effects on silage maize under saline-alkali field conditions[J]. Current Microbiology, 2023, 80(9): 291.
    [20] 周妍, 王丽娜, 张美珍, 刘权, 殷奎德. 耐盐碱解磷菌的筛选鉴定及对绿豆的促生作用[J]. 西北农业学报, 2022, 31(4): 488-497. ZHOU Y, WANG LN, ZHANG MZ, LIU Q, YIN KD. Screening and identification of phosphate solubilizing bacteria tolerant to salt-alkali and its growth-promoting effect on mung bean[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(4): 488-497(in Chinese).
    [21] 孙健, 张鑫鹏, 李松龄, 王亚艺. 高寒冷凉环境中解磷微生物的效果初探[J]. 中国土壤与肥料, 2023(1): 217-223. SUN J, ZHANG XP, LI SL, WANG YY. Screening of phosphorus solubilizing microorganisms under high latitude and cold environment[J]. Soil and Fertilizer Sciences in China, 2023(1): 217-223(in Chinese).
    [22] ATEŞ Ö, ÇAKMAKÇI R, YALÇIN G, TAŞPINAR K, ALVEROĞLU V. Isolation and characterization of phosphate solubilizing bacteria and effect of growth and nutrient uptake of maize under pot and field conditions[J]. Communications in Soil Science and Plant Analysis, 2022, 53(16): 2114-2124.
    [23] 李正昀, 王舒, 张扬, 张林平, 李冬. 施加解磷菌剂对油茶根际微生物和土壤酶活性的影响[J]. 西北林学院学报, 2018, 33(1): 188-192. LI ZY, WANG S, ZHANG Y, ZHANG LP, LI D. Effects of different phosphate-solubilizing bacteria on rhizosphere microorganism and enzyme activities of Camellia oleifera[J]. Journal of Northwest Forestry University, 2018, 33(1): 188-192(in Chinese).
    [24] 强茹茹, 曾捷, 达布希拉图. 添加解磷菌剂的生物炭对冬马铃薯磷吸收和土壤细菌群落组成的影响[J]. 云南农业大学学报(自然科学), 2021, 36(4): 717-726. QIANG RR, ZENG J, DABU XLT. Effect of phosphate liberation bacteria added in biochar on the phosphorus absorption and soil bacterial community composition in winter potatoes[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(4): 717-726(in Chinese).
    [25] 杜雷, 陈钢, 王素萍, 洪娟, 黄翔, 张利红, 叶莉霞, 张贵友, 练志诚. 解磷菌剂对生菜根际土壤微生物数量和酶活性的影响[J]. 湖北农业科学, 2019, 58(11): 70-74. DU L, CHEN G, WANG SP, HONG J, HUANG X, ZHANG LH, YE LX, ZHANG GY, LIAN ZC. Effects of phosphate-solubilizing bacteria on rhizosphere microorganism and enzyme activities of lettuce[J]. Hubei Agricultural Sciences, 2019, 58(11): 70-74(in Chinese).
    [26] LIU YH, NESSA A, ZHENG QY, HU DN, ZHANG WY, ZHANG MY. Inoculations of phosphate- solubilizing bacteria alter soil microbial community and improve phosphorus bioavailability for moso bamboo (Phyllostachys edulis) growth[J]. Applied Soil Ecology, 2023, 189: 104911.
    [27] 银婷婷, 王敬敬, 柳影, 梁亚杰, 王兴彪, 韩一凡, 王夏, 程美娟, 黄志勇. 高效解磷菌的筛选及其促生机制的初步研究[J]. 生物技术通报, 2015, 31(12): 234-242. YIN TT, WANG JJ, LIU Y, LIANG YJ, WANG XB, HAN YF, WANG X, CHENG MJ, HUANG ZY. The screening of efficient phosphorus-solubilizing bacteria and the primary study on its mechanism of plant-growth-promoting[J]. Biotechnology Bulletin, 2015, 31(12): 234-242(in Chinese).
    [28] 杨顺, 杨婷, 林斌, 刘杏忠, 向梅春. 2株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018, 58(2): 264-273. YANG S, YANG T, LIN B, LIU XZ, XIANG MC. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiologica Sinica, 2018, 58(2): 264-273(in Chinese).
    [29] 王君, 范延辉, 尚帅, 李学平, 张玉苗, 吴涛, 许骥坤. 一株根际解磷菌的筛选鉴定及溶磷促生作用[J]. 中国土壤与肥料, 2022(6): 195-203. WANG J, FAN YH, SHANG S, LI XP, ZHANG YM, WU T, XU JK. Isolation and identification of a rhizosphere phosphate-solubilizing strain and its plant growth promotion[J]. Soil and Fertilizer Sciences in China, 2022(6): 195-203(in Chinese).
    [30] 杨海霞, 刘希旻, 潘奕臣, 赵香林, 黄海东. 耐盐碱溶磷菌Y2R2的分离鉴定及溶磷特性[J]. 生物技术通报, 2020, 36(10): 127-134. YANG HX, LIU XM, PAN YC, ZHAO XL, HUANG HD. Isolation, identification and characterization of salt-alkali-tolerant and phosphorus-dissolving bacterium Y2R2[J]. Biotechnology Bulletin, 2020, 36(10): 127-134(in Chinese).
    [31] 胡山. 一株耐盐碱溶磷菌溶磷特性及对盐碱土壤理化性质的影响[D]. 兰州: 西北师范大学硕士学位论文, 2017. HU S. The characteristic of phosphorus dissolution of a salt-tolerant and alkaline-tolerant phosphate-solubilizing bacteria and the effect on physical and chemical properties of saline-alkaline soil[D]. Lanzhou: Master’s Thesis of Northwest Normal University, 2017(in Chinese).
    [32] 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2019. JIANG HH. Saline-alkali soil remediation by the combined application of halotolerant phosphate solubilizing microorganism and rock phosphate[D]. Harbin: Doctoral Dissertation of Harbin Institute of Technology, 2019(in Chinese).
    [33] 钱兰华, 钱玮, 沈雪林, 胡翠英, 刘乾, 蒋晨威, 朱昫飏, 王桃云. 耐盐促生菌的筛选、鉴定及其对黄瓜的促生作用[J]. 江苏农业科学, 2019, 47(18): 160-163. QIAN LH, QIAN W, SHEN XL, HU CY, LIU Q, JIANG CW, ZHU XY, WANG TY. Screening and identification of salt-tolerant bacteria and its promoting effect on cucumber[J]. Jiangsu Agricultural Sciences, 2019, 47(18): 160-163(in Chinese).
    [34] 张云霞, 雷鹏, 许宗奇, 冯小海, 徐虹, 许仙菊. 一株高效解磷菌Bacillus subtilis JT-1的筛选及其对土壤微生态和小麦生长的影响[J]. 江苏农业学报, 2016, 32(5): 1073-1080. ZHANG YX, LEI P, XU ZQ, FENG XH, XU H, XU XJ. Screening of a high-efficiency phosphate solubilizing bacterium Bacillus subtilis JT-1 and its effects on soil microecology and wheat growth[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(5): 1073-1080(in Chinese).
    [35] 陈凯, 李纪顺, 杨合同, 张新建, 魏艳丽, 黄玉杰. 巨大芽孢杆菌P1的解磷效果与发酵条件研究[J]. 中国土壤与肥料, 2010(4): 73-76. CHEN K, LI JS, YANG HT, ZHANG XJ, WEI YL, HUANG YJ. Phosphate solubilizing abilities of Bacillus megaterium strain P1 and its fermentation conditions[J]. Soil and Fertilizer Sciences in China, 2010(4): 73-76(in Chinese).
    [36] 钱婷, 叶建仁. 巨大芽孢杆菌ZS-3溶无机磷机制及其对樟树的促生作用[J]. 生物技术通报, 2020, 36(8): 45-52. QIAN T, YE JR. The mechanism of dissolving inorganic phosphorus by Bacillus megaterium ZS-3 and its growth promotion of Cinnamomum camphora[J]. Biotechnology Bulletin, 2020, 36(8): 45-52(in Chinese).
    [37] 孙科, 耿凤英, 于秋菊, 王锋. 牛蒡根际土壤中解钾菌筛选、鉴定及解钾条件优化[J]. 中国酿造, 2020, 39(10): 103-108. SUN K, GENG FY, YU QJ, WANG F. Screening and identification of potassium-dissolving bacterium in burdock rhizosphere soil and optimization of potassium-dissolving conditions[J]. China Brewing, 2020, 39(10): 103-108(in Chinese).
    [38] 唐岷宸, 李文静, 宋天顺, 谢婧婧. 一株高效解磷菌的筛选及其解磷效果验证[J]. 生物技术通报, 2020, 36(6): 102-109. TANG MC, LI WJ, SONG TS, XIE JJ. Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect[J]. Biotechnology Bulletin, 2020, 36(6): 102-109(in Chinese).
    [39] ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. The Science of the Total Environment, 2018, 612: 522-537.
    [40] NARSIAN V, PATEL HH. Aspergillus aculeatus as a rock phosphate solubilizer[J]. Soil Biology and Biochemistry, 2000, 32(4): 559-565.
    [41] RODRÍGUEZ H, FRAGA R. Phosphate solubilizing bacteria and their role in plant growth promotion[J]. Biotechnology Advances, 1999, 17(4/5): 319-339.
    [42] 刘胜亮, 朱舒亮, 祁先慧, 李晓原, 张富玮, 杨文英, 李建贵. 四株解磷菌分泌有机酸与溶解磷酸三钙能力的研究[J]. 新疆农业科学, 2017, 54(6): 1114-1121. LIU SL, ZHU SL, QI XH, LI XY, ZHANG FW, YANG WY, LI JG. Study on organic acid secreted from four strains phosphorus-solubilizing bacteria and calcium phosphate dissolving ability[J]. Xinjiang Agricultural Sciences, 2017, 54(6): 1114-1121(in Chinese).
    [43] 白洁, 姚拓, 王占军, 雷杨, 杨晓蕾, 张蔚. 欧李内生促生菌分离、鉴定及促生、耐盐碱特性[J]. 干旱地区农业研究, 2022, 40(1): 132-138. BAI J, YAO T, WANG ZJ, LEI Y, YANG XL, ZHANG W. Isolation and identification as well as growth enhancementand saline-alkali tolerance properties of Cerasus humilisplant growth-promoting endophytes[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 132-138(in Chinese).
    [44] 张巍, 冯玉杰, 胡纯国, 王鑫. 耐盐碱解磷菌的分离鉴定及解磷能力研究[J]. 土壤通报, 2009, 40(3): 572-575. ZHANG W, FENG YJ, HU CG, WANG X. Isolation, identification and phosphate-solubilizing capability of saline-alkali tolerance PSMs[J]. Chinese Journal of Soil Science, 2009, 40(3): 572-575(in Chinese).
    [45] 胡玉婕, 朱秀玲, 丁延芹, 杜秉海, 汪城墙. 芽孢杆菌的耐盐促生机制研究进展[J]. 生物技术通报, 2020, 36(9): 64-74. HU YJ, ZHU XL, DING YQ, DU BH, WANG CQ. Research progress on salt tolerance and growth- promoting mechanism of Bacillus[J]. Biotechnology Bulletin, 2020, 36(9): 64-74(in Chinese).
    [46] 徐曼, 王茜, 王奕骁, 刘冬, 王诗惠, 李志坚, 周帮伟. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响[J]. 中国草地学报, 2020, 42(1): 15-20. XU M, WANG Q, WANG YX, LIU D, WANG SH, LI ZJ, ZHOU BW. Effects of different salt stress on seed germination and seedling growth of Elytrigia elongate[J]. Chinese Journal of Grassland, 2020, 42(1): 15-20(in Chinese).
    [47] 林志伟, 肖翠红, 白鑫雨, 孙冬梅. 解磷菌DQ-N对大豆种子萌发及苗期生长的影响[J]. 大豆科学, 2021, 40(5): 676-681. LIN ZW, XIAO CH, BAI XY, SUN DM. Effects of DQ-N strain on seed germination and seedling growth of soybean[J]. Soybean Science, 2021, 40(5): 676-681(in Chinese).
    [48] Ke CL, Li SJ, Duan YJ. Effects of phosphate- solubilizing bacteria on the growth of banana seedlings and physical and chemical factors[J]. Natural Science Journal of Hainan University, 2017, 35(3): 253-259.
    [49] SARIKHANI MR, KHOSHRU B, GREINER R. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer[J]. World Journal of Microbiology and Biotechnology, 2019, 35(8): 126.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李青青,张芮,高彦婷,张红娟,刘柯含. 耐盐碱解磷菌的溶磷效果及其对黄豆萌发的影响[J]. 微生物学通报, 2024, 51(11): 4574-4589

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-13
  • 录用日期:2024-04-30
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码