科微学术

微生物学通报

茶轮斑病拮抗细菌kc-16的抑菌性能及田间防效
作者:
基金项目:

国家重点研发计划(2022YFD16000803-6);湖南省重点研发计划(2022NK2051,2023NK2013);湖南省科技创新重大项目(2021NK1020)


Antimicrobial activity and field control effect of an antagonistic bacterial strain kc-16 against tea gray blight
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】茶轮斑病是茶树的主要病害,目前仍以化学防治为主,而化学防治引起的农残与抗药性问题亟待解决,发掘和利用生防微生物资源是保障茶叶安全生产和提高产量的重要举措。【目的】筛选对茶轮斑病菌(Pseudopestalotiopsis theae)具有拮抗能力的芽孢杆菌并初步明确该拮抗菌的抑菌性能及其对茶树的田间防病促生效果,为茶轮斑病菌生防技术开发提供支持。【方法】利用平板对峙法筛选对茶轮斑病菌具有拮抗效果的细菌;通过形态特征、生理生化特征结合16S rRNA基因测序对筛选所得拮抗菌进行种属鉴定;利用不同检测平板分析产真菌细胞壁裂解酶的特性,通过平板对峙试验测定菌株kc-16不同类型代谢产物对茶轮斑病菌的抑制能力,同时测定菌株kc-16对其他9种常见植物病原真菌的拮抗率以确定其广谱抑菌能力,最后进行田间试验评价菌株kc-16对茶轮斑病的防治和对茶树的增产效果。【结果】筛选到一株对茶轮斑病菌有较好抑制效果的菌株kc-16,抑菌率为(79.62±0.82)%。经生理生化特征比对与16S rRNA基因序列同源性分析,将菌株kc-16鉴定为枯草芽孢杆菌沙漠亚种(Bacillus subtilis subsp. inaquosorum);该菌具有固氮、产铁载体与溶磷能力,但不具有解钾能力;能够分泌蛋白酶、纤维素酶、β-1,3葡聚糖酶和几丁质酶。此外,其对9种病原真菌均有不同程度的抑制效果,抑制率为46.67%−81.00%。同时,其胞外抑菌物质均对茶轮斑病菌有抑制作用,菌株kc-16的无菌滤液、蛋白类代谢物、挥发性代谢产物和非挥发性代谢产物的平板抑制率分别为69.00%、58.00%、47.50%和78.71%;田间试验表明枯草芽孢杆菌沙漠亚种对茶树有良好的防病促生效果,在显著降低茶轮斑病发病率的同时,使茶叶鲜重(1芽1叶)相较空白对照提升了25.0%。【结论】枯草芽孢杆菌沙漠亚种对茶轮斑病菌有较好的抑制效果,同时对茶树也有较好的促生效果,具有潜在的应用价值。本研究结果为该菌株的后续研究和其在防治植物病害方面的应用提供了理论支撑。

    Abstract:

    [Background] Tea gray blight is a major disease attacking tea plants. Chemical methods are mainly used to control this disease, and the chemical residues and pathogen resistance caused by chemical control need to be solved urgently. Exploring biocontrol microorganisms is an important measure to ensure the safety and increase the yield of tea production. [Objective] To screen the Bacillus strains with inhibitory effects on tea gray blight and clarify the inhibitory activity and field control effect of the strain screened out, providing support for the development of biocontrol methods for tea gray blight. [Methods] A plate confrontation experiment was conducted to screen out the strain with antagonistic effect on Pseudopestalotiopsis theae, the pathogen causing tea gray blight. The strain was identified based on morphological, physiological, and biochemical characteristics and sequence analysis of the 16S rRNA. Various plates were utilized to examine the production of enzymes lysing fungal cell walls by the strain. Plate confrontation tests were conducted to determine the inhibitory activities of different metabolites produced by the strain on Ps. theae. The inhibition rates against nine common species of plant pathogenic fungi were measured to assess the antifungal spectrum of the strain. Finally, field experiments were conducted to evaluate the effects of the strain on tea gray blight and yield of tea plants. [Results] A strain kc-16 with antagonistic effect on Ps. theae was screened out, with the inhibition rate of (79.62±0.82)%, and it was identified as Bacillus subtilis subsp. inaquosorum by morphological, physiological, and biochemical characteristics and 16S rRNA gene sequence analysis. Strain kc-16 demonstrated nitrogen-fixing, iron carriers producing and phosphorus-solubilizing abilities but lacked the potassium-solubilizing ability, and it could secrete protease, cellulase, β-1,3-glucanase, and chitinase. In addition, strain kc-16 inhibited nine species of pathogenic fungi, with inhibition rates ranging from 46.67% to 81.00%. The extracellular substances of strain kc-16 exhibited inhibitory effects on the pathogen of tea gray blight. Specifically, the cell-free filtrate, crude protein extract, volatile substances, and non-volatile substances of this strain showcased the inhibition rates of 69.00%, 58.00%, 47.50%, and 78.71%, respectively. In field experiments, B. subtilis subsp. inaquosorum showed tea gray blight-preventing and growth-promoting effects on tea plants. It reduced the incidence of tea gray blight while increasing the fresh weight of tea leaves (one bud and one leaf) by 25.0% compared with the blank control. [Conclusion] B. subtilis subsp. inaquosorum inhibits tea gray blight and promotes the growth of tea plants, demonstrating the application potential. The results of this study provide theoretical support for the future research and application of this strain in the control of plant diseases.

    参考文献
    [1] 董照锋. 茶轮斑病体外抑制试验及大田防治效果[J]. 山西农业大学学报(自然科学版), 2019, 39(1): 13-20. DONG ZF. Effects of commonly used fungicides on Pestalotiopsis theae under laboratory and field conditions[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(1): 13-20(in Chinese).
    [2] XU GX, YING F, WU HM, TANG XX. Biocontrol potential of two deep-sea microorganisms against gray blight disease of tea[J]. Egyptian Journal of Biological Pest Control, 2023, 33(1): 53.
    [3] BORA P, CHANDRA BORA L, BHUYAN RP, HASHEM A, FATHI ABD-ALLAH E. Bioagent consortia assisted suppression in grey blight disease with enhanced leaf nutrients and biochemical properties of tea (Camellia sinensis)[J]. Biological Control, 2022, 170: 104907.
    [4] WANG SS, MI XZ, WU ZR, ZHANG LX, WEI CL. Characterization and pathogenicity of Pestalotiopsis- like species associated with gray blight disease on Camellia sinensis in Anhui Province, China[J]. Plant Disease, 2019, 103(11): 2786-2797.
    [5] KUMAR J, RAMLAL A, MALLICK D, MISHRA V. An overview of some biopesticides and their importance in plant protection for commercial acceptance[J]. Plants, 2021, 10(6): 1185.
    [6] 张玉丹, 谭琳, 任佐华, 杨艺帅, 杨学宇, 胡秋龙. 茶炭疽病拮抗链霉菌的筛选鉴定与拮抗能力测定[J]. 中国生物防治学报, 2023, 39(3): 646-656. ZHANG YD, TAN L, REN ZH, YANG YS, YANG XY, HU QL. Screening, identification and determination of antagonistic actinomycetes strain against tea anthracnose[J]. Chinese Journal of Biological Control, 2023, 39(3): 646-656(in Chinese).
    [7] 黄大野, 杨丹, 姚经武, 刘芳, 廖先清, 曹春霞. 贝莱斯芽孢杆菌CY30防治茶轮斑病研究[J]. 中国植保导刊, 2020, 40(11): 13-18. HUANG DY, YANG D, YAO JW, LIU F, LIAO XQ, CAO CX. Study on the control effect of Bacillus velezensis CY30 on tea gray blight[J]. China Plant Protection, 2020, 40(11): 13-18(in Chinese).
    [8] 卢声洁, 赵兴丽, 罗林丽, 张欣, 程宇豪, 张金峰, 李帅, 周玉锋. 拮抗茶轮斑病菌生防木霉菌的筛选、鉴定与应用[J]. 贵州农业科学, 2021, 49(3): 44-49. LU SJ, ZHAO XL, LUO LL, ZHANG X, CHENG YH, ZHANG JF, LI S, ZHOU YF. Screening, identification and application of Trichoderma strain antagonizing tea grey blight[J]. Guizhou Agricultural Sciences, 2021, 49(3): 44-49(in Chinese).
    [9] 黄伟, 张丽娟, 王宁, 王玮. 芽孢杆菌属挥发性物质及其在植物病害防治中的应用研究进展[J]. 中国植保导刊, 2021, 41(9): 30-36. HUANG W, ZHANG LJ, WANG N, WANG W. Research progress and application of Bacillus spp. volatile organic compounds in plant disease control[J]. China Plant Protection, 2021, 41(9): 30-36(in Chinese).
    [10] 马乔女, 李心悦, 顾欣, 王新谱. 芽孢杆菌抗真菌肽的研究进展[J]. 中国植保导刊, 2023, 43(5): 17-24. MA QN, LI XY, GU X, WANG XP. Research progress of Bacillus antifungal peptides[J]. China Plant Protection, 2023, 43(5): 17-24(in Chinese).
    [11] 郑世仲, 周子维, 陈晓慧, 蔡烈伟, 江胜滔, 刘盛荣. 拮抗炭疽病的茶树内生菌筛选、鉴定及培养条件优化[J]. 茶叶科学, 2023, 43(2): 205-215. ZHENG SZ, ZHOU ZW, CHEN XH, CAI LW, JIANG ST, LIU SR. Screening, identification and culture condition optimization of antagonistic endophytic bacteria against Gloeosporium theae-sinensis miyake[J]. Journal of Tea Science, 2023, 43(2): 205-215(in Chinese).
    [12] 杨学宇, 谭琳, 张玉丹, 杨艺帅, 邓玉莲, 任佐华, 胡秋龙. 茶轮斑病病原菌的分离鉴定及其拮抗菌筛选[J]. 湖南农业大学学报(自然科学版), 2023, 49(2): 195-200. YANG XY, TAN L, ZHANG YD, YANG YS, DENG YL, REN ZH, HU QL. Identification of pathogen from tea leaves with gray blight disease and screening of biocontrol strain[J]. Journal of Hunan Agricultural University (Natural Sciences Edition), 2023, 49(2): 195-200(in Chinese).
    [13] 周嫒婷, 王芳, 尹加笔, 刘丽, 张东华, 洪英娣, 沈德周, 马焕成, 伍建榕. 德宏州油茶炭疽病拮抗内生芽孢杆菌6715的筛选与鉴定[J]. 西部林业科学, 2021, 50(4): 131-138. ZHOU YT, WANG F, YIN JB, LIU L, ZHANG DH, HONG YD, SHEN DZ, MA HC, WU JR. Screening and identification of Bacillus tequilensis 6715 as biological agent against Camellia oleifera anthracnose disease in Dehong prefecture[J]. Journal of West China Forestry Science, 2021, 50(4): 131-138(in Chinese).
    [14] 蔡信之, 黄君红. 微生物学实验[M]. 4版. 北京: 科学出版社, 2019. CAI XZ, HUANG JH. Microbiological Experiment[M]. 4th ed. Beijing: Science Press, 2019(in Chinese).
    [15] 王明欢, 张小娜, 林冰, 邓锦辉, 张英. 中药药渣中固氮菌、解磷菌、解钾菌的筛选[J]. 中成药, 2020, 42(2): 531-533. WANG MH, ZHANG XN, LIN B, DENG JH, ZHANG Y. Screening of nitrogen-fixing bacteria, phosphorus-solubilizing bacteria and potassium- solubilizing bacteria in traditional Chinese medicine residue[J]. Chinese Traditional Patent Medicine, 2020, 42(2): 531-533(in Chinese).
    [16] 赵君, 饶惠玲, 王耘籽, 黄伟, 吴承祯, 李键. 红壤区杉木根际高效解磷菌的筛选、鉴定及培养条件优化[J]. 厦门大学学报(自然科学版), 2022, 61(1): 112-121. ZHAO J, RAO HL, WANG YZ, HUANG W, WU CZ, LI J. Screening, identification and optimization of culture conditions of two high-efficiency phosphorus-solubilizing bacteria in the rhizosphere of Cunninghamia lanceolata in red soil areas[J]. Journal of Xiamen University (Natural Science Edition), 2022, 61(1): 112-121(in Chinese).
    [17] 方园, 彭勇政, 廖长贵, 陈路生, 周琦, 黄俭, 阎依超, 王慕媛, 张祎坤, 邹丽芳, 陈功友. 一株具有防病促生功能的贝莱斯芽孢杆菌SF327[J]. 微生物学报, 2022, 62(10): 4071-4088. FANG Y, PENG YZ, LIAO CG, CHEN LS, ZHOU Q, HUANG J, YAN YC, WANG MY, ZHANG YK, ZOU LF, CHEN GY. Bacillus velezensis SF327, a potential biocontrol agent with the functions of preventing plant diseases and promoting plant growth[J]. Acta Microbiologica Sinica, 2022, 62(10): 4071-4088(in Chinese).
    [18] 黄华毅, 田呈明, 梁小文. 克里本类芽孢杆菌TRCC 82001抑菌活性分析及发酵条件优化[J]. 西北林学院学报, 2022, 37(6): 153-160. HUANG HY, TIAN CM, LIANG XW. Antifungal activity of Paenibacillus kribbensis TRCC 82001 and optimization of fermentation conditions[J]. Journal of Northwest Forestry University, 2022, 37(6): 153-160(in Chinese).
    [19] 余贤美, 郑服丛, 林超, 贺春萍, 张修国. 土壤产嗜铁素拮抗细菌CAS15的分离鉴定[J]. 植物保护学报, 2009, 36(2): 129-135. YU XM, ZHENG FC, LIN C, HE CP, ZHANG XG. Isolation and identification of siderophore producing bacteria CAS15 from the soil[J]. Journal of Plant Protection, 2009, 36(2): 129-135(in Chinese).
    [20] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. DONG XZ, CAI MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001(in Chinese).
    [21] 布坎南RE, 吉本斯NE. 伯杰细菌鉴定手册[M]. 中国科学院微生物研究所, 译. 8版. 北京: 科学出版社, 1984. BUCHANAN RE, GIBBONS NE. Bergey’s Manual of Determinative Bacteriology[M]. Institute of Microbiology, Chinese Academy of Sciences, trans. 8th ed. Beijing: Science Press, 1984(in Chinese).
    [22] 张丽荣, 李鹏, 康萍芝, 杜玉宁, 陈杭. 压砂西瓜枯萎病生防木霉菌筛选及其拮抗机制研究[J]. 河南农业科学, 2018, 47(5): 75-78, 84. ZHANG LR, LI P, KANG PZ, DU YN, CHEN H. Screening and antagonistic mechanism analysis of Trichoderma spp. against Fusarium wilt of watermelon in gravel-mulched land[J]. Journal of Henan Agricultural Sciences, 2018, 47(5): 75-78, 84(in Chinese).
    [23] 朱华珺, 周瑚, 任佐华, 刘二明. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学, 2020, 34(5): 470-478. ZHU HJ, ZHOU H, REN ZH, LIU EM. Extracellular antimicrobial substances produced by Bacillus subtilis JN005 and its control efficacy on rice leaf blast[J]. Chinese Journal of Rice Science, 2020, 34(5): 470-478(in Chinese).
    [24] WELLER DM, THOMASHOW LS. Use of rhizobacteria for biocontrol[J]. Current Opinion in Biotechnology, 1993, 4(3): 306-311.
    [25] ŞAHİNOĞLU E, TOZLU E. An investigation of biological control possibilities against Fusarium proliferatum on red pepper[J]. Turkish Journal of Agriculture and Forestry, 2023, 47(4): 467-478.
    [26] ETESAMI H, JEONG BR, GLICK BR. Biocontrol of plant diseases by Bacillus spp.[J]. Physiological and Molecular Plant Pathology, 2023, 126: 102048.
    [27] LECLÈRE V, BÉCHET M, ADAM A, GUEZ JS, WATHELET B, ONGENA M, THONART P, GANCEL F, CHOLLET-IMBERT M, JACQUES P. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities[J]. Applied and Environmental Microbiology, 2005, 71(8): 4577-4584.
    [28] 李雨欣, 戴欣宇, 曹雪梅, 李二峰. 生防菌在植物病害领域的研究进展[J]. 湖南生态科学学报, 2023, 10(2): 109-116. LI YX, DAI XY, CAO XM, LI EF. Research progress of microbial antagonists in the field of plant diseases[J]. Journal of Hunan Ecological Science, 2023, 10(2): 109-116(in Chinese).
    [29] CHAVES-LÓPEZ C, SERIO A, GIANOTTI A, SACCHETTI G, NDAGIJIMANA M, CICCARONE C, STELLARINI A, CORSETTI A, PAPARELLA A. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth[J]. Journal of Applied Microbiology, 2015, 119(2): 487-499.
    [30] POULAKI EG, TJAMOS SE. Bacillus species: factories of plant protective volatile organic compounds[J]. Journal of Applied Microbiology, 2023, 134(3): lxad037.
    [31] JIAO XR, TAKISHITA Y, ZHOU GS, SMITH DL. Plant associated rhizobacteria for biocontrol and plant growth enhancement[J]. Frontiers in Plant Science, 2021, 12: 634796.
    [32] QIAO JQ, YU X, LIANG XJ, LIU YF, BORRISS R, LIU YZ. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome[J]. BMC Microbiology, 2017, 17(1): 131.
    [33] GLICK BR, CHENG ZY, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase- producing soil bacteria[J]. European Journal of Plant Pathology, 2007, 119(3): 329-339.
    [34] OOI YS, MOHAMED NOR NMI, FURUSAWA G, THAREK M, GHAZALI AH. Application of bacterial endophytes to control bacterial leaf blight disease and promote rice growth[J]. The Plant Pathology Journal, 2022, 38(5): 490-502.
    [35] 许世洋, 范雨轩, 汪学苗, 张怡忻, 柴继宽, 李建军, 李敏权, 漆永红, 李雪萍. 辣椒镰孢根腐病防病促生细菌的筛选及其效应[J]. 微生物学报, 2022, 62(7): 2735-2750. XU SY, FAN YX, WANG XM, ZHANG YX, CHAI JK, LI JJ, LI MQ, QI YH, LI XP. The Fusarium root rot-controlling effect and growth-promoting effect of the bacteria in the rhizosphere of Capsicum annuum[J]. Acta Microbiologica Sinica, 2022, 62(7): 2735-2750(in Chinese).
    [36] 王欢, 韩丽珍. 4株茶树根际促生菌菌株的鉴定及促生作用[J]. 微生物学通报, 2019, 46(3): 548-562. WANG H, HAN LZ. Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere[J]. Microbiology China, 2019, 46(3): 548-562(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨学宇,谭琳,沈程文,邓玉莲,李桂花,黄虹,胡秋龙. 茶轮斑病拮抗细菌kc-16的抑菌性能及田间防效[J]. 微生物学通报, 2024, 51(11): 4560-4573

复制
分享
文章指标
  • 点击次数:89
  • 下载次数: 251
  • HTML阅读次数: 199
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 录用日期:2024-06-01
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码