科微学术

微生物学通报

信号分子AI-2合成关键基因luxS对嗜盐喜盐芽孢杆菌盐适应性的影响
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(32300111);山西省科技创新人才团队项目(202204051001035);山西省基础研究计划(202303021212258);运城市基础研究计划(YCKJ-2023030);博士来晋科研专项(QZX-2023006);运城学院博士启动基金(YQ-2023005);运城学院应用研究项目(YY-202302)


Effects of the critical gene luxS related to synthesis of AI-2 on salt adaptability of Halobacillus halophilus
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    【背景】群体感应信号分子AI-2是由S-核糖基高半胱氨酸裂解酶(S-ribosylhomocysteinase, LuxS)和S-腺苷高半胱氨酸核苷酶(S-adenosylhomocysteine nucleosidase, Pfs,也被称为MtnN)催化S-腺苷高半胱氨酸(S-adenosylhomocysteine, SAH)生成的4,5-二羟基-2,3-戊二酮(4,5-dihydroxy-2,3- pentanedione, DPD)自发环化形成,在细菌中广泛参与调节多种重要的生理过程,如趋化、生物发光、生物膜形成等;然而该信号分子对嗜盐喜盐芽孢杆菌盐适应性的影响尚未报道。【目的】对嗜盐喜盐芽孢杆菌(Halobacillus halophilus)群体感应信号分子AI-2进行体外合成并揭示AI-2对嗜盐喜盐芽孢杆菌盐适应性的影响。【方法】以嗜盐喜盐芽孢杆菌为研究对象,首先通过实时定量PCR分析luxS转录水平与盐浓度之间的联系;之后对LuxS、MtnN-1、MtnN-2、MtnN-3进行多序列比对分析寻找其关键氨基酸位点并通过异源表达纯化4种蛋白进行AI-2的体外合成;最后使用同源重组方法敲除luxS并通过盐胁迫、胞内相容性溶质含量检测、生物膜形成检测等试验研究luxS对嗜盐喜盐芽孢杆菌盐适应性的影响。【结果】实时定量分析表明嗜盐喜盐芽孢杆菌中luxS的转录水平随盐浓度上升而上调,而且受到Cl离子浓度的正向调控。生长曲线结合生物发光试验表明随着嗜盐喜盐芽孢杆菌的生长,培养液上清中AI-2活性在15 h达到最大,此外随着盐浓度的提高,其AI-2活性也会增强。体外酶促反应试验表明LuxS能够与MtnN-1或MtnN-2共同催化合成AI-2。利用同源重组技术成功构建了嗜盐喜盐芽孢杆菌luxS缺失突变体,在低盐条件下(0.5 mol/L NaCl)野生型、luxS缺失突变体和互补菌株的生长曲线无明显差异,而在高盐条件下(3.5 mol/L NaCl) luxS突变体的生长较为缓慢,互补菌株则能够恢复到与野生型相似的生长状况。此外,luxS的缺失会导致嗜盐喜盐芽孢杆菌在高盐条件下的盐胁迫存活率、胞内相容性溶质含量以及生物膜形成能力的下降,而互补菌株则可以恢复到接近野生型的水平。【结论】嗜盐喜盐芽孢杆菌能够合成信号分子AI-2,其luxS受到Cl离子浓度的正向调控并对其盐适应性具有重要的调控作用,为进一步研究嗜盐喜盐芽孢杆菌的盐适应性调节机制提供基础。

    Abstract:

    [Background] The quorum sensing signal molecule AI-2 is spontaneously cyclized from 4,5-dihydroxy-2,3-pentanedione (DPD), which is derived from S-adenosylhomocysteine (SAH) via catalysis by S-ribosylhomocysteinase (LuxS) and S-adenosylhomocysteine nucleosidase (Pfs, also known as MtnN). AI-2 regulates a variety of physiological processes including chemotaxis, bioluminescence, and biofilm formation of bacteria. However, the effect of AI-2 on the salt adaptability of Halobacillus halophilus has not been reported. [Objective] To synthesize AI-2 in vitro and reveal its effect on the salt adaptability of H. halophilus. [Methods] The relationship between luxS transcript level in H. halophilus and salt concentration was assessed by real-time quantitative PCR. Then, multiple sequence alignments of LuxS, MtnN-1, MtnN-2, and MtnN-3 were performed to identify the key amino acid sites, and the four proteins were heterologously expressed and purified for the synthesis of AI-2 in vitro. Finally, luxS was knocked out by homologous recombination, and the effect of luxS on the salt adaptability of H. halophilus was studied through salt stress assay, intracellular compatible solute content determination, and biofilm formation assay. [Results] The transcript level of luxS in H. halophilus increased with the elevation in salt concentration and was positively regulated by the Cl concentration. The growth curve and bioluminescence assay showed that as H. halophilus grew, the AI-2 activity in the supernatant of the culture medium reached the maximum at 15 h, and it enhanced with the increase in salt concentration. The in vitro enzymatic reaction assay showed that LuxS collaborated with MtnN-1 or MtnN-2 to catalyze the synthesis of AI-2. The luxS-deleted mutant of H. halophilus was successfully constructed by homologous recombination. Under a low salt concentration (0.5 mol/L NaCl), there were no significant differences in the growth curves between the wild type, luxS-deleted mutant, and complementary strain. However, under high salt (3.5 mol/L NaCl), the luxS-deleted mutant grew slow, while the complementary strain demonstrated a growth trend similar to that of the wild type. Furthermore, the deletion of luxS led to decreases in the survival rate, intracellular compatible solute content, and biofilm formation of H. halophilus under salt stress, whereas the complementary strain could recover to the levels close to those of the wild type. [Conclusion] H. halophilus can synthesize AI-2, and its luxS is positively regulated by the Cl concentration and plays an important role in regulating salt adaptability. The findings provide a basis for further research on the regulatory mechanism of salt adaptability in H. halophilus.

    参考文献
    相似文献
    引证文献
引用本文

王卓,王传旭,杨静,李云杰,牛亚洁,李新. 信号分子AI-2合成关键基因luxS对嗜盐喜盐芽孢杆菌盐适应性的影响[J]. 微生物学通报, 2024, 51(11): 4517-4534

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-31
  • 最后修改日期:
  • 录用日期:2024-09-18
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码