科微学术

微生物学通报

一株扎布耶盐碱湖伪盐生杜氏藻的分离鉴定及生长影响因素分析
作者:
基金项目:

青海省基础应用研究计划(2022ZJ914)


Isolation, identification, and analysis of growth influencing factors of a Dunaliella pseudosalina strain from Zabuye Salt Lake
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】杜氏藻(Dunaliella)具有独特的生理特性和丰富的胞内次级代谢物,在医药、食品、养殖业、化工、轻工等领域具有广泛的应用价值。【目的】分析影响杜氏藻生物量的生长因素和最优培养条件,以期提高杜氏藻的生物量;明确最佳培养条件下杜氏藻胞内次级代谢物的种类。【方法】采用纯培养法分离伪盐生杜氏藻(Dunaliella pseudosalina) ZBY-1,18S rRNA基因测序明确其分类学地位;采用单因素试验探究其生长最佳条件以及营养盐种类及浓度;采用正交试验优化分离藻株的培养条件;利用液相色谱-质谱联用技术(LC-MS)检测藻株ZBY-1在最佳培养条件下的次级代谢产物。【结果】藻株ZBY-1的最适生长盐度为10%,最适生长pH值为8.5,最适生长温度为25 ℃。单因素分析显示最适碳源、氮源、磷源的种类和浓度分别为NaHCO3 1.26、CO(NH2)2 0.84、NaH2PO4 0.06 g/L。优化生长条件后,藻株ZBY-1的细胞密度可达(2.57±0.12)×107个/mL,较优化前提高了1.25倍。LC-MS分析表明胞内次级代谢物的种类主要是萜类、生物碱类、苯丙素类、氨基酸相关化合物等;显著富集的代谢物通路是辅助因子生物合成、植物类次级代谢物合成和ABC转运等途径。【结论】扎布耶盐碱湖的地理位置特殊,藻类资源未被深入挖掘。分离藻株ZBY-1可适应高盐碱环境,为后续胞内次级代谢物的应用开发提供一定的参考依据。

    Abstract:

    [Background] With rich metabolites and unique physiological properties, Dunaliella has wide applications in the pharmaceutical, food, aquaculture, chemical, and light industries. [Objective] To analyze the factors affecting the biomass of Dunaliella and the optimal culture conditions with a view to increasing the biomass of Dunaliella and identify the secondary metabolites of Dunaliella under the optimal culture conditions. [Methods] D. pseudosalina ZBY-1 was isolated by the culture method and identified by 18S rRNA gene sequencing. The growth conditions (nutrients and concentrations) were optimized by single factor and orthogonal experiments. The secondary metabolites of strain ZBY-1 cultured under the optimal conditions were then analyzed by LC-MS. [Results] The strain ZBY-1 showcased the best growth performance at 10% NaCl, pH 8.5, and 25 ℃. The optimal carbon, nitrogen, and phosphorus sources and their concentrations for this strain were NaHCO3 1.26 g/L, CO(NH2)2 0.84 g/L, and NaH2PO4 0.06 g/L, respectively. The cell density of strain ZBY-1 cultured under the optimal conditions reached (2.57±0.12)×107 cells/mL, which increased by 1.25 times compared with that before optimization. LC-MS results showed that secondary metabolites were mainly terpenoids, alkaloids, phenylpropanoids, and amino acid-related compounds. The enriched metabolite pathways were the cofactor biosynthesis pathway, plant-derived metabolite biosynthesis pathway, and the ABC transport pathway. [Conclusion] Zabuye Salt Lake has a special geographical location, whereas the algal resources remain to be exploited. The isolated strain ZBY-1 can adapt to the high saline-alkali environments, which provide a basis for subsequent development and application of the metabolites of this strain.

    参考文献
    [1] 高帆, 尹旭岗, 冯佳, 吕俊平, 刘琪, 南芳茹, 刘旭东, 谢树莲. 不同品系杜氏藻的多相特征研究[J]. 水生生物学报, 2021, 45(4): 925-934. GAO F, YIN XG, FENG J, LÜ JP, LIU Q, NAN FR, LIU XD, XIE SL. Study on polyphasic characteristics of different strains of dunaliella[J]. Acta Hydrobiologica Sinica, 2021, 45(4): 925-934(in Chinese).
    [2] OREN A. A hundred years of Dunaliella research: 1905–2005[J]. Saline Systems, 2005, 1: 2.
    [3] GARCÍA-GONZÁLEZ M, MORENO J, CAÑAVATE JP, ANGUIS V, PRIETO A, MANZANO C, FLORENCIO FJ, GUERRERO MG. Conditions for open-air outdoor culture of Dunaliella salina in southern Spain[J]. Journal of Applied Phycology, 2003, 15(2): 177-184.
    [4] HIGHFIELD A, WARD A, PIPE R, SCHROEDER DC. Molecular and phylogenetic analysis reveals new diversity of Dunaliella salina from hypersaline environments[J]. Journal of the Marine Biological Association of the United Kingdom, 2021, 101(1): 27-37.
    [5] MA K, CHEN SW, WU Y, MA YT, QIAO HC, FAN JH, WU HZ. Dietary supplementation with microalgae enhances the zebrafish growth performance by modulating immune status and gut microbiota[J]. Applied Microbiology and Biotechnology, 2022, 106(2): 773-788.
    [6] CAPA-ROBLES W, GARCÍA-MENDOZA E, de JESÚS PANIAGUA-MICHEL J. Enhanced β-carotene and biomass production by induced mixotrophy in Dunaliella salina across a combined strategy of glycerol, salinity, and light[J]. Metabolites, 2021, 11(12): 866.
    [7] HE QH, LIN YQ, TAN H, ZHOU Y, WEN YL, GAN JJ, LI RW, ZHANG QL. Transcriptomic profiles of Dunaliella salina in response to hypersaline stress[J]. BMC Genomics, 2020, 21(1): 115.
    [8] LIU TY, DAI JJ, ZHAO YY, TIAN SF, NIE Z, YE CY. Using remote sensing technology to monitor salt lake changes caused by climate change and melting glaciers: insights from Zabuye Salt Lake in Xizang[J]. Journal of Oceanology and Limnology, 2023, 41(4): 1258-1276.
    [9] 郑绵平, 刘文高, 向军. 西藏扎布耶盐湖嗜盐菌、藻的发现和地质生态学雏议[J]. 地质学报, 1985, 59(2): 162-171, 188. ZHENG MP, LIU WG, XIANG J. The discovery of halophilic algae and halobacteria at zabuye Salt Lake Xizang and preliminary study on the geoecology[J]. Acta Geological Sinica, 1985, 59(2): 162-171, 188(in Chinese).
    [10] 崔金龙, 童银栋, 赵锋, 麦富源, 李胜楠, 李明月, 王洁, 孙学军, 张强弓. 基于高通量测序技术的西藏冰湖真核浮游植物群落组成特征分析[J]. 北京师范大学学报(自然科学版), 2023, 59(2): 218-229. CUI JL, TONG YD, ZHAO F, MAI FY, LI SN, LI MY, WANG J, SUN XJ, ZHANG QG. Eukaryotic phytoplankton community composition in Xizang glacial lakes analyzed by high throughput sequencing[J]. Journal of Beijing Normal University (Natural Science Edition), 2023, 59(2): 218-229(in Chinese).
    [11] OREN A. The microbiology of red brines[J]. Advances in Applied Microbiology, 2020, 113: 57-110.
    [12] 杨欣兰, 潘瑛子, 何文佳, 扎西拉姆, 刘飞. 西藏哲古错水源河流夏季浮游植物群落特征差异及其与水环境的关系[J]. 西藏农业科技, 2022, 44(4): 47-54. YANG XL, PAN YZ, HE WJ, ZHAXILAMU, LIU F. Differences in summer phytoplankton community characteristics and their relationship with water environment in chugu-tso lake and source rivers in Xizang[J]. Tibet Journal of Agricultural Sciences, 2022, 44(4): 47-54(in Chinese).
    [13] OREN A. The ecology of Dunaliella in high-salt environments[J]. Journal of Biological Research, 2014, 21(1): 23.
    [14]Teodoresco EC. Organisation et developpement du Dunaliella, nouveau genre de volvocacee- polyblepharidee[J]. Micrographe Preparateur, 1905(1): 215-232.
    [15] BUTCHER RW. An Introductory Account of the Smaller Algae of British Coastal Waters. 1: Introduction and Chlorophyceae[EB/OL]. London : Her Majesty’s Stationery Office, 1959.
    [16] YANG SF, FAN YW, CAO Y, WANG YX, MOU HJ, SUN H. Technological readiness of commercial microalgae species for foods[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-25.
    [17] MATALIN DA, KHRAMOV DE, SHUVALOV AV, VOLKOV VS, BALNOKIN YV, POPOVA LG. Cloning and characterization of two putative P-type ATPases from the marine microalga Dunaliella maritima similar to plant H+-ATPases and their gene expression analysis under conditions of hyperosmotic salt shock[J]. Plants, 2021, 10(12): 2667.
    [18] FENG SY, HU LN, ZHANG QH, ZHANG FQ, DU JX, LIANG GF, LI AF, SONG GN, LIU Y. CRISPR/Cas technology promotes the various application of Dunaliella salina system[J]. Applied Microbiology and Biotechnology, 2020, 104(20): 8621-8630.
    [19] MASOJÍDEK J, LHOTSKÝ R, ŠTĚRBOVÁ K, ZITTELLI GC, TORZILLO G. Solar bioreactors used for the industrial production of microalgae[J]. Applied Microbiology and Biotechnology, 2023, 107(21): 6439-6458.
    [20] SUI YX, VLAEMINCK SE. Dunaliella microalgae for nutritional protein: an undervalued asset[J]. Trends in Biotechnology, 2020, 38(1): 10-12.
    [21] WU SL, CHEN R, CHEN JY, YANG N, LI K, ZHANG Z, ZHANG RQ. Study of the anti-inflammatory mechanism of β-carotene based on network pharmacology[J]. Molecules, 2023, 28(22): 7540.
    [22] FAN HJ, HUANG WY, GUO Y, MA XF, YANG JH. α-linolenic acid suppresses proliferation and invasion in osteosarcoma cells via inhibiting fatty acid synthase[J]. Molecules, 2022, 27(9): 2741.
    [23] LV WW, XU DX. Docosahexaenoic acid delivery systems, bioavailability, functionality, and applications: a review[J]. Foods, 2022, 11(17): 2685.
    [24] YANG YN, GE SH, PAN YT, QIAN WY, WANG SN, ZHANG J, ZHUANG LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production[J]. The Science of the Total Environment, 2023, 857(Pt 1): 159281.
    [25] 秦瑞阳, 李永富, 刘建国. 盐度、光强和温度对盐生杜氏藻生长的影响及其交互作用[J]. 海洋科学, 2021, 45(11): 73-81. QIN RY, LI YF, LIU JG. Effects of salinity, light, and temperature and their interactions on Dunaliella salina growth[J]. Marine Sciences, 2021, 45(11): 73-81(in Chinese).
    [26] SHETTY P, GITAU MM, MARÓTI G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae[J]. Cells, 2019, 8(12): 1657.
    [27] 张晓钗, 李亮, 何宁芳, 龚雪晴, 主朋月, 王晓阳. 不同盐度胁迫下杜氏盐藻全转录组测序及注释[J]. 微生物学报, 2019, 59(7): 1342-1353. ZHANG XC, LI L, HE NF, GONG XQ, ZHU PY, WANG XY. Gene expression profiling of Dunaliella salina under different salinity stress[J]. Acta Microbiologica Sinica, 2019, 59(7): 1342-1353(in Chinese).
    [28] 焉翠蔚, 卢元芳, 李延团, 赵可夫. NaCl对杜氏盐藻生长的效应[J]. 曲阜师范大学学报(自然科学版), 1995, 21(1): 65-68. YAN CW, LU YF, LI YT, ZHAO KF. Effect of NaCl on the growth of Dunaliella salina[J]. Journal of Qufu Normal University (Natural Science Edition), 1995, 21(1): 65-68(in Chinese).
    [29] 武振晋. 两株不同杜氏盐藻培养条件的优化及β-胡萝卜素积累的研究[D]. 太谷: 山西农业大学硕士学位论文, 2017. WU ZJ. Two different strains of Dunaliella salina optimization of culture conditions and the accumulation of β-carotene[D]. Taigu: Master’s Thesis of Shanxi Agricultural University, 2017(in Chinese).
    [30] 王俊. 杜氏盐藻、青岛大扁藻对营养盐变化的生理生态学响应机制[D]. 舟山: 浙江海洋大学硕士学位论文, 2012. WANG J. The physiological responses of Dunahella sauna and Playtmonas subcordiformis (wille) hazen to nutrients changes[D]. Zhoushan: Master’s Thesis of Zhejiang ocean University, 2012(in Chinese).
    [31] GOLDMAN JC, MANN R. Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures[J]. Journal of Experimental Marine Biology and Ecology, 1980, 46(1): 29-39.
    [32] SEEPRATOOMROSH J, POKETHITIYOOK P, MEETAM M, YOKTHONGWATTANA K, YUAN WQ, PUGKAEW W, KANGVANSAICHOL K. The effect of light stress and other culture conditions on photoinhibition and growth of Dunaliella tertiolecta[J]. Applied Biochemistry and Biotechnology, 2016, 178(2): 396-407.
    [33] 王玲玲, 李兆河, 马贵范, 王吝安. 碳源对杜氏盐藻株生长的影响及其培养基的优化[J]. 水产学杂志, 2019, 32(6): 54-58. WANG LL, LI ZH, MA GF, WANG LA. Effect of carbon sources on growth and optimization of culture medium in green Alga Dunaliella salina[J]. Chinese Journal of Fisheries, 2019, 32(6): 54-58(in Chinese).
    [34] 孔维宝, 汪洋, 杨红, 葸玉琴, 韩锐, 牛世全. 不同营养方式对普通小球藻生长代谢及生化组分的影响[J]. 微生物学报, 2015, 55(3): 299-310. KONG WB, WANG Y, YANG H, XI YQ, HAN R, NIU SQ. Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris[J]. Acta Microbiologica Sinica, 2015, 55(3): 299-310(in Chinese).
    [35] WHITE DA, PAGARETTE A, ROOKS P, ALI ST. The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures[J]. Journal of Applied Phycology, 2013, 25(1): 153-165.
    [36] COLMAN B, HUERTAS IE, BHATTI S, DASON JS. The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae[J]. Functional Plant Biology, 2002, 29(3): 261-270.
    [37] 宋雨晴, 靳翠丽, 胡文峰, 封克, 周晓见. 氮源对盐藻生长及细胞物质组成的影响[J]. 生态环境学报, 2017, 26(2): 268-274. SONG YQ, JIN CL, HU WF, FENG K, ZHOU XJ. The effect of nitrogen supply on the growth and cell chemical composition of Dunaliella salina[J]. Ecology and Environmental Sciences, 2017, 26(2): 268-274(in Chinese).
    [38] 魏晓雪, 石峰, 陈子熙, 冯剑丰, 朱琳. 三角褐指藻及其藻际细菌对不同无机氮源的响应[J]. 海洋科学, 2022, 46(1): 10-21. WEI XX, SHI F, CHEN ZX, FENG JF, ZHU L. Responses of Phaeodactylum tricornutum and its bacteria in the phycosphere to different inorganic nitrogen sources[J]. Marine Sciences, 2022, 46(1): 10-21(in Chinese).
    [39] 汪本凡. 杜氏盐藻纯化及生物学特性研究[D]. 合肥: 安徽农业大学硕士学位论文, 2004. WANG BF. The purification and research of biologic characteristic of Dunaliella salina[D]. Hefei: Master’s Thesis of Anhui Agricultural University, 2004(in Chinese).
    [40] 梁英, 孙明辉, 刘春强, 田传远. 氮源对三角褐指藻、盐藻和米氏凯伦藻生长和种间竞争的影响[J]. 海洋环境科学, 2015, 34(1): 29-35. LIANG Y, SUN MH, LIU CQ, TIAN CY. Effects of nitrogen sources on the growth and interspecific competition of Phaeodactylum tricornutum, Dunaliella salina and Karenia mikinotoi[J]. Marine Environmental Science, 2015, 34(1): 29-35(in Chinese).
    [41] MULHOLLAND MR, OHKI K, CAPONE DG. Nitrogen utilization and metabolism relative to patterns of n2 fixation in cultures of trichodesmium nibb1067[J]. Journal of Phycology, 1999, 35(5): 977-988.
    [42] 郁彬琦, 靳翠丽, 刘青, 周晓见. 氮磷和盐度对杜氏盐藻生产性能的正交优化试验[J]. 饲料工业, 2021, 42(3): 54-60. YU BQ, JIN CL, LIU Q, ZHOU XJ. Effects of nitrogen, phosphorus and salinity on the production performance of Dunaliella salina[J]. Feed Industry, 2021, 42(3): 54-60(in Chinese).
    [43] 陈晓江, 董芙羽, 刘晓峰. 营养盐磷浓度对斜生栅藻生长的影响[J]. 湖北农业科学, 2021, 60(16): 28-32. CHEN XJ, DONG FY, LIU XF. Effects of phosphate concentration on the growth of Scenedesmus obliquus[J]. Hubei Agricultural Sciences, 2021, 60(16): 28-32(in Chinese).
    [44] 梁英, 李泽邦, 刘春强, 田传远, 黄徐林. 不同磷源对3种海洋微藻生长和种间竞争的影响[J]. 海洋湖沼通报, 2017(5): 132-140. LIANG Y, LI ZB, LIU CQ, TIAN CY, HUANG XL. Effects of different phosphorus source on the growth and interspecific competition in 3 marine microalgal species[J]. Transactions of Oceanology and Limnology, 2017(5): 132-140(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭敏,韩睿,陶宇杰,高翔,邢江娃,王嵘,朱德锐. 一株扎布耶盐碱湖伪盐生杜氏藻的分离鉴定及生长影响因素分析[J]. 微生物学通报, 2024, 51(11): 4502-4516

复制
分享
文章指标
  • 点击次数:93
  • 下载次数: 201
  • HTML阅读次数: 197
  • 引用次数: 0
历史
  • 收稿日期:2024-03-21
  • 录用日期:2024-03-27
  • 在线发布日期: 2024-10-31
  • 出版日期: 2024-11-20
文章二维码