科微学术

微生物学通报

拟康宁木霉T-51的固体发酵参数优化
作者:
基金项目:

上海市科技兴农项目(2022-02-08-00-12-F01199);上海市西甜瓜产业体系([2022]1);上海市农业科学院“卓越团队”建设计划(沪农科卓[2022]020)


Optimization of solid-state fermentation parameters for the biocontrol strain Trichoderma koningiopsis T-51
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】 木霉是一类应用广泛的植物病害生防真菌。拟康宁木霉(Trichoderma koningiopsis) T-51是一株能够促进植物生长、诱导植物系统抗性、对多种植物病害有良好的防治效果的优秀生防菌株,具有较好的应用前景。【目的】 研究并优化拟康宁木霉T-51分生孢子的固体发酵技术,提高菌株T-51的产孢量,为该菌株的大规模生产提供理论参考。【方法】 采用单因素试验结合响应面法,筛选菌株T-51适宜的发酵基质,分析优化固体发酵的水分含量、发酵时长、接种浓度,以及碳氮源成分和比例等因素。【结果】 通过对不同固体发酵基质筛选发现,使用单一稻壳作为发酵基质的产孢效果最好,水分含量为75%且发酵时间延长至11 d能够显著提高产孢量,接种浓度在1×106CFU/mL时产孢量更高,高浓度孢子液(1×108 CFU/mL)接种则产孢量下降;稻壳基质中最适宜菌株T-51产孢的碳氮源为葡萄糖和硫酸铵。通过响应面法分析得到最佳发酵条件:水分含量79.5%,发酵时长11 d,接种浓度1×106 CFU/ml,最佳碳氮源成分比例:葡萄糖2.6%,乳糖0.75%和硫酸铵5%,于此优化条件下菌株T-51预测最高产孢量为7.76×109 CFU/g,实际产孢量为7.83×109 CFU/g。【结论】 建立了基于稻壳基质的菌株T-51高效固体发酵技术,使菌株T-51的产孢量能够满足田间应用的需求,降低生产成本,为菌株T-51未来在田间的规模化应用提供了理论基础。

    Abstract:

    [Background] Trichoderma spp. have been widely used for controlling plant diseases. Trichoderma koningiopsis T-51, an effective biocontrol strain, is capable of promoting plant growth, inducing plant systemic resistance, and controlling plant diseases, demonstrating a promising prospect for practical applications. [Objective] To study and optimize the solid-state fermentation technology of T. koningiopsis T-51 for improving the spore production, and provide a theoretical reference for the large-scale production of this strain. [Methods] Single-factor experiments and response surface methodology were employed to screen the suitable fermentation substrate for strain T-51 and optimize the key fermentation factors including water content, fermentation duration, inoculation concentration, and carbon and nitrogen source composition. [Results] With rice husk as the fermentation substrate, the strain demonstrated the highest spore production. The water content of 75% and fermentation duration of 11 days significantly increased the spore production. In addition, an inoculation concentration of 1×106 CFU/mL exhibited higher spore production, while the inoculation concentration of 1×108 CFU/mL showed a decrease in sporulation. Glucose and ammonium sulfate were identified as the optimal carbon and nitrogen sources, respectively, for the spore production of strain T-51 with rice husk as the substrate. The fermentation parameters were optimized by the response surface methodology as water content of 79.5%, fermentation duration of 11 days, inoculation concentration of 1×106 CFU/mL, 2.6% glucose, 0.75% lactose, and 5% ammonium sulfate. Under these optimized conditions, strain T-51 was predicted to achieve the maximum spore production of 7.76×109 CFU/g, and the measured value was 7.83×109 CFU/g. [Conclusion] This study has successfully established an efficient solid-state fermentation technology for strain T-51 with rice husk as the substrate, allowing adequate sporulation for field applications with reduced production costs. This study provided a theoretical basis for the future large-scale application of strain T-51 in the field.

    参考文献
    [1] SHARMA A, GUPTA B, VERMA S, PAL J, Mukesh, Akanksha, CHAUHAN P. Unveiling the biocontrol potential of Trichoderma[J]. European Journal of Plant Pathology, 2023, 167(4): 569-591.
    [2] HARMAN GE, HOWELL CR, VITERBO A, CHET I, LORITO M. Trichoderma species: opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2: 43-56.
    [3] RUSH TA, SHRESTHA HK, MEENA MG, SPANGLER MK, ELLIS JC, LABBÉ JL, ABRAHAM PE. Bioprospecting Trichoderma: a systematic roadmap to screen genomes and natural products for biocontrol applications[J]. Frontiers in Fungal Biology, 2021, 2: 716511.
    [4] ZIN NA, BADALUDDIN NA. Biological functions of Trichoderma spp. for agriculture applications[J]. Annals of Agricultural Sciences, 2020, 65(2): 168-178.
    [5] POVEDA J. Trichoderma as biocontrol agent against pests: new uses for a mycoparasite[J]. Biological Control, 2021, 159: 104634.
    [6] KUMAR V, KOUL B, TAAK P, YADAV D, SONG M. Journey of Trichoderma from pilot scale to mass production: a review[J]. Agriculture, 2023, 13(10): 2022.
    [7] BISSETT J, GAMS W, JAKLITSCH W, SAMUELS GJ. Accepted Trichoderma names in the year 2015[J]. IMA Fungus, 2015, 6(2): 263-295.
    [8] CAI F, DRUZHININA IS. In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma[J]. Fungal Diversity, 2021, 107(1): 1-69.
    [9] RODRIGUES AO, MAY de MIO LL, SOCCOL CR. Trichoderma as a powerful fungal disease control agent for a more sustainable and healthy agriculture: recent studies and molecular insights[J]. Planta, 2023, 257(2): 31.
    [10] VERMA M, BRAR SK, TYAGI RD, SURAMPALLI RY, VALÉRO JR. Antagonistic fungi, Trichoderma spp.: panoply of biological control[J]. Biochemical Engineering Journal, 2007, 37(1): 1-20.
    [11] 张丽芳, 曹阳, 张兰. 生防木霉菌T-102发酵工艺优化及水悬浮剂配方研制[J]. 花生学报, 2023, 52(3): 35-41. ZHANG LF, CAO Y, ZHANG L. Fermentation process optimization and suspension concentrate preparation of Trichoderma harzianum T-102[J]. Journal of Peanut Science, 2023, 52(3): 35-41(in Chinese).
    [12] 谢小林, 王勇, 陈猛, 周莲, 李成江, 刘玉敏, 朱红惠. 哈茨木霉BWT1.221的固态发酵工艺条件优化研究[J]. 中国生物防治学报, 2023, 39(5): 1224-1234. XIE XL, WANG Y, CHEN M, ZHOU L, LI CJ, LIU YM, ZHU HH. Optimization of solid state fermentation conditions for Trichoderma harzianum BWT1.221[J]. Chinese Journal of Biological Control, 2023, 39(5): 1224-1234(in Chinese).
    [13] YOU JQ, ZHANG J, WU MD, YANG L, CHEN WD, LI GQ. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato[J]. Biological Control, 2016, 101: 31-38.
    [14] 尤佳琪, 杜然, 顾卫红, 李超汉, 李国庆, 宋荣浩. 拟康宁木霉T-51菌株生物学特性及其生物防治潜力[J]. 植物保护学报, 2022, 49(3): 946-955. YOU JQ, DU R, GU WH, LI CH, LI GQ, SONG RH. Biological characteristics and biological control potential of endophytic fungus Trichoderma koningiopsis strain T-51[J]. Journal of Plant Protection, 2022, 49(3): 946-955(in Chinese).
    [15] 尤佳琪, 杨红娟, 朱丽华, 李超汉, 顾卫红, 宋荣浩. 拟康宁木霉T-51促进西瓜种子萌发效果[J]. 北方园艺, 2020(18): 25-31. YOU JQ, YANG HJ, ZHU LH, LI CH, GU WH, SONG RH. Effects of watermelon seed germination promotion by Trichoderma koningiopsis T-51[J]. Northern Horticulture, 2020(18): 25-31(in Chinese).
    [16] 王前程, 张迎迎, 戴陶宇, 尤佳琪, 郭世荣, 朱为民. 拟康宁木霉T-51菌株对番茄枯萎病的生物防治及其机理研究[J]. 西北植物学报, 2022, 42(6): 974-982. WANG QC, ZHANG YY, DAI TY, YOU JQ, GUO SR, ZHU WM. Study on biological control effect and mechanism of Trichoderma koningiopsis T-51 on tomato Fusarium wilt[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(6): 974-982(in Chinese).
    [17] YOU JQ, LI GQ, LI CH, ZHU LH, YANG HJ, SONG RH, GU WH. Biological control and plant growth promotion by volatile organic compounds of Trichoderma koningiopsis T-51[J]. Journal of Fungi, 2022, 8(2): 131.
    [18] 梁昌聪, 刘磊, 张建华, 郭立佳, 王伟伟, 黄俊生. 响应面法优化绿色木霉H06产孢发酵培养基[J]. 热带作物学报, 2014, 35(2): 333-338. LIANG CC, LIU L, ZHANG JH, GUO LJ, WANG WW, HUANG JS. Optimization of medium components for sporulation quantity by Trichoderma viride strain H06 using response surface methodology[J]. Chinese Journal of Tropical Crops, 2014, 35(2): 333-338(in Chinese).
    [19] 刘时轮, 李勇, 傅俊范, 丁万隆, 方焕民. 绿色木霉菌株Tv04-2固体发酵条件研究[J]. 华北农学报, 2008, 23(S2): 244-247. LIU SL, LI Y, FU JF, DING WL, FANG HM. Study on solid fermentation conditions of Trichoderma viride strain Tv04-2[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(S2): 244-247(in Chinese).
    [20] 冯程龙. 哈茨木霉T-E5分生孢子固体发酵工艺及其生物有机肥对黄瓜的促生效果研究[D]. 南京: 南京农业大学硕士学位论文, 2017. FENG CL. Study on solid-state fermentation of Trichoderma harzianum T-E5 conidia and growth promoting effect of its bio-organic fertilizer on cucumber[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2017(in Chinese).
    [21] NAEIMI S, KHOSRAVI V, VARGA A, VÁGVÖLGYI C, KREDICS L. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease[J]. Agronomy, 2020, 10(9): 1258.
    [22] 张成, 廖文敏, 薛鸣, 陈迪, 侯巨梅, 刘铜. 棘孢木霉DQ-1分生孢子固体发酵优化及其对4种作物幼苗生长的影响[J]. 中国生物防治学报, 2021, 37(2): 315-322. ZHANG C, LIAO WM, XUE M, CHEN D, HOU JM, LIU T. Optimization of solid substrate and conditions of Trichoderma asperellum DQ-1 and effect on four crop seedlings growth[J]. Chinese Journal of Biological Control, 2021, 37(2): 315-322(in Chinese).
    [23] 刘世祥, 张荣胜, 刘永锋, 谷祖敏, 于俊杰. 深绿木霉TA-9分生孢子固体发酵的响应曲面法优化[J]. 农药学学报, 2022, 24(1): 96-104. LIU SX, ZHANG RS, LIU YF, GU ZM, YU JJ. Optimization of solid-state fermentation process of Trichoderma atroviride TA-9 by response surface methodology[J]. Chinese Journal of Pesticide Science, 2022, 24(1): 96-104(in Chinese).
    [24] 周文博. 生物质资源: 稻壳的开发利用研究[D]. 南昌: 南昌大学硕士学位论文, 2013. ZHOU WB. Study on development and utilization of biomass resources: rice husk[D]. Nanchang: Master’s Thesis of Nanchang University, 2013(in Chinese).
    [25] 王永东, 蒋立科, 岳永德, 花日茂, 江丽. 生防菌株哈茨木霉H-13固体发酵条件的研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(6): 645-650. WANG YD, JIANG LK, YUE YD, HUA RM, JIANG L. Studies on the solid fermentation conditions for the biocontrol agents of Trichoderma harzianum strain H-13[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2006, 32(6): 645-650(in Chinese).
    [26] 杨丹丹, 杨传伦, 张心青, 潘冬梅, 李佳明, 陈振发. 响应面法优化绿色木霉产孢子固体发酵培养基[J]. 中国农学通报, 2020, 36(36): 84-92. YANG DD, YANG CL, ZHANG XQ, PAN DM, LI JM, CHEN ZF. Response surface methodology applied to spores production by solid-state fermentation of Trichoderma viride[J]. Chinese Agricultural Science Bulletin, 2020, 36(36): 84-92(in Chinese).
    [27] SCHRÜFER K, LYSEK G. Rhythmic growth and sporulation in Trichoderma species: differences within a population of isolates[J]. Mycological Research, 1990, 94(1): 124-127.
    相似文献
    引证文献
引用本文

尤佳琪,杨红娟,朱丽华,顾卫红,曹碧婷,吕铎,胡政,周成,李超汉. 拟康宁木霉T-51的固体发酵参数优化[J]. 微生物学通报, 2024, 51(10): 4149-4161

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-18
  • 录用日期:2024-04-30
  • 在线发布日期: 2024-10-08
  • 出版日期: 2024-10-20
文章二维码