科微学术

微生物学通报

内蒙古和海南干旱地区芽孢杆菌和伯克霍德尔菌的耐旱性
作者:
基金项目:

南京农业大学国家级大学生创新训练项目(202310307099Z);国家自然科学基金(41977199)


Drought tolerance of Bacillus spp. and Burkholderia spp. in arid areas of Inner Mongolia and Hainan
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [47]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 世界旱灾的频发对农作物的产量和品质都造成了严重的影响,亟需一种经济节约的方法来缓解。植物根际促生细菌有望直接用于农作物提高耐旱性。【目的】 干旱环境中的微生物物种组成和分布格局具有独特性。研究从干旱土壤中筛选出的细菌遗传多样性和功能多样性十分必要。【方法】 利用聚乙二醇6000 (polyethylene glycol 6000, PEG-6000)模拟干旱胁迫,对内蒙古和海南干旱地区采集分离获得的30份芽孢杆菌(Bacillus spp.)和伯克霍德尔菌(Burkholderia spp.)进行耐旱性分析及生物学特性分析。【结果】 通过聚类分析把30株供试菌株的耐旱能力分为三类群,并且不同胁迫条件下供试菌株表现为3种生长模式:在第一类生长模式中,渗透势-0.2 mPa与0 mPa的OD600值无显著差异;第二类生长模式中,随着渗透势的增加,菌株的OD600值也随之下降。这类菌占总体供试菌株的43.33%;第三类生长模式中,菌株在-0.6 mPa和-1.2 mPa渗透势下,OD600值无显著差异。对30株供试菌株进行生物学特性分析,发现每株菌都有产吲哚乙酸(indole acetic acid, IAA)、铁载体、脲酶、精氨酸脱羧酶和生物膜这5种特性中的1-4种特性,即供试菌株都具有潜在的植物促生功能。【结论】 基于耐旱性分析和生物学特性分析,最终筛选到2株优质耐旱芽孢杆菌NC51、NO89,均为第三类生长模式。为今后提高作物耐旱性和研发微生物菌剂提供菌种资源。

    Abstract:

    [Background] The frequent occurrence of drought in the world has seriously affected both the yield and quality of crops. An economically efficient method to alleviate it is urgently needed. Plant growth-promoting rhizobacteria (PGPR) are expected to directly improve drought tolerance in crops. [Objective] In arid environments, the species composition and distribution patterns of microbial communities are unique. It is essential to study the genetic diversity and functional diversity of bacteria screened from arid soils. [Methods] Thirty strains of Bacillus spp. and Burkholderia spp. were collected and isolated from the arid areas in Inner Mongolia and Hainan provinces, respectively. These strains were subjected to drought tolerance analysis and biological characteristic analysis using polyethylene glycol 6000 (PEG-6000) to simulate drought stress. [Results] Cluster analysis categorized the drought tolerance of the 30 tested strains into 3 groups. The tested strains exhibited 3 growth patterns under different stress conditions: in the first type of growth pattern, there was no significant difference in OD600 value between the permeability potential of -0.2 mPa and 0 mPa; in the second type of growth pattern, the OD600 value of the strain decreased as permeability potential increased, and the strains which exhibited this growth pattern represent 43.33% of the total tested strains; in the third type of growth pattern, there was no significant difference in OD600 values at -0.6 mPa and -1.2 mPa permeation potential. The biological characteristics of the 30 tested strains revealed that each strain exhibited 1 to 4 characteristics of IAA, siderophore, urease, arginine decarboxylase, and biofilm, indicating the tested strains have potential plant growth-promoting functions. [Conclusion] Based on drought tolerance analysis and biological characteristic analysis, two superior drought resistance Bacillus strains, NC51 and NO89, were finally screened, both exhibiting the third type of growth pattern. These strains provide microbial resources for improving crop drought tolerance and developing microbial inoculants in the future.

    参考文献
    [1] MONDAL S, MISHRA AK, LEUNG R, COOK B. Global droughts connected by linkages between drought hubs[J]. Nature Communications, 2023, 14(1): 144.
    [2] United Nations Convention to Combat Deaertification. Drought in Numbers 2022[EB/OL]. (2022-05-20) [2024-02-01]. http://www.unccd.int/resources/publications/drought-numbers.
    [3] RASHID U, YASMIN H, HASSAN MN, NAZ R, NOSHEEN A, SAJJAD M, ILYAS N, KEYANI R, JABEEN Z, MUMTAZ S, ALYEMENI MN, AHMAD P. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions[J]. Plant Cell Reports, 2022, 41(3): 549-569.
    [4] SOBOLEVA A, FROLOVA N, BUREIKO K, SHUMILINA J, BALCKE GU, ZHUKOV VA, TIKHONOVICH IA, FROLOV A. Dynamics of reactive carbonyl species in pea root nodules in response to polyethylene glycol (PEG)-induced osmotic stress[J]. International Journal of Molecular Sciences, 2022, 23(5): 2726.
    [5] GROVER M, ALI SZ, SANDHYA V, RASUL A, VENKATESWARLU B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World Journal of Microbiology and Biotechnology, 2011, 27(5): 1231-1240.
    [6] JOCHUM MD, McWILLIAMS KL, BORREGO EJ, KOLOMIETS MV, NIU GH, PIERSON EA, JO YK. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses[J]. Frontiers in Microbiology, 2019, 10: 2106.
    [7] COHEN AC, BOTTINI R, PONTIN M, BERLI FJ, MORENO D, BOCCANLANDRO H, TRAVAGLIA CN, PICCOLI PN. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels[J]. Physiologia Plantarum, 2015, 153(1): 79-90.
    [8] ARMADA E, PROBANZA A, ROLDÁN A, AZCÓN R. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants[J]. Journal of Plant Physiology, 2016, 192: 1-12.
    [9] SALEEM AR, BRUNETTI C, KHALID A, DELLA ROCCA G, RAIO A, EMILIANI G, de CARLO A, MAHMOOD T, CENTRITTO M. Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria[J]. PLoS One, 2018, 13(2): e0191218.
    [10] UZMA M, IQBAL A, HASNAIN S. Drought tolerance induction and growth promotion by indole acetic acid producing Pseudomonas aeruginosa in Vigna radiata[J]. PLoS One, 2022, 17(2): e0262932.
    [11] CHEN CQ, XIN KY, LIU H, CHENG JL, SHEN XH, WANG Y, ZHANG L. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat[J]. Scientific Reports, 2017, 7: 41564.
    [12] CRUZ C, CARDOSO P, SANTOS J, MATOS D, FIGUEIRA E. Bioprospecting soil bacteria from arid zones to increase plant tolerance to drought: growth and biochemical status of maize inoculated with plant growth-promoting bacteria isolated from Sal Island, Cape Verde[J]. Plants, 2022, 11(21): 2912.
    [13] LI P, TENG CC, ZHANG JF, LIU YJ, WU XX, HE T. Characterization of drought stress-mitigating Rhizobium from faba bean (Vicia faba L.) in the Chinese Qinghai-Xizang Plateau[J]. Frontiers in Microbiology, 2023, 14: 1212996.
    [14] JIANG CY, SHENG XF, QIAN M, WANG QY. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J]. Chemosphere, 2008, 72(2): 157-164.
    [15] 李枢妍, 何艳丽, 宋超东, 黄夏至, 陆君铭, 李时勇, 张红岩, 申乃坤, 姜明国. 铜绿假单胞菌Gxun-2产铁载体发酵条件优化及其抑菌效果[J]. 食品工业科技, 2024, 45(10): 118-125. LI SY, HE YL, SONG CD, HUANG XZ, LU JM, LI SY, ZHANG HY, SHEN NK, JIANG MG. Optimization of siderophores production and its antifungal activity of Pseudomonas aeruginosa gxun-2[J]. Science and Technology of Food Industry, 2024, 45(10): 118-125(in Chinese).
    [16] 杜俊鹏, 吕军, 吴计生, 赵立勇, 魏春凤, 张宇. 基于主成分分析法和系统聚类分析法的河流水质评价研究[J]. 水利技术监督, 2022, 30(12): 216-220. DU JP, LÜ J, WU JS, ZHAO LY, WEI CF, ZHANG Y. Study on river water quality evaluation based on principal component analysis and system cluster analysis[J]. Technical Supervision in Water Resources, 2022, 30(12): 216-220(in Chinese).
    [17] 卢前成, 宁松瑞, 颜安, 孙萌, 左筱筱. PEG-6000干旱胁迫下18种牧草种子萌发特性与响应机制[J]. 江苏农业科学, 2023, 51(22): 180-190. LU QC, NING SR, YAN A, SUN M, ZUO XX. Seed germination characteristics and response mechanism of 18 forage grasses under PEG-6000 simulated drought stress[J]. Jiangsu Agricultural Sciences, 2023, 51(22): 180-190(in Chinese).
    [18] 许健, 于海林, 王宇先, 周超, 兰宏宇, 徐莹莹, 李青超. 苗期玉米对PEG-6000胁迫的生理响应[J]. 黑龙江农业科学, 2021(8): 8-11. XU J, YU HL, WANG YX, ZHOU C, LAN HY, XU YY, LI QC. Physiological response of maize to PEG-6000 stress at seedling stage[J]. Heilongjiang Agricultural Sciences, 2021(8): 8-11(in Chinese).
    [19] LI YT, CHENG C, AN DD. Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L[J]. Plant Protection Science, 2016, 53(1): 32-43.
    [20] DEVARAJAN AK, SABARINATHAN KG, GOMATHY M, KANNAN R, BALACHANDAR D. Mitigation of drought stress in rice crop with plant growth-promoting abiotic stress-tolerant rice phyllosphere bacteria[J]. Journal of Basic Microbiology, 2020, 60(9): 768-786.
    [21] LÜ ZW, LIU HY, WANG CL, CHEN X, HUANG YX, ZHANG MM, HUANG QL, ZHANG GF. Isolation of endophytic fungi from Cotoneaster multiflorus and screening of drought-tolerant fungi and evaluation of their growth-promoting effects[J]. Frontiers in Microbiology, 2023, 14: 1267404.
    [22] NICHOLSON WL, MUNAKATA N, HORNECK G, MELOSH HJ, SETLOW P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments[J]. Microbiology and Molecular Biology Reviews: MMBR, 2000, 64(3): 548-572.
    [23] Han L, Zhang M, Du L, Du L, Zhang L, Li B. Effects of Bacillus amyloliquefaciens QST713 on photosynthesis and antioxidant characteristics of alfalfa (Medicago sativa L.) under drought stress[J]. Agronomy. 2022, 12(9): 2177.
    [24] XIE ZC, ZHANG XJ, LANG DY, ZHANG XH. Growth-promoting bacteria alleviates drought stress of G. uralensis through improving photosynthesis characteristics and water status[J]. Journal of Plant Interactions, 2019, 14(1): 580-589.
    [25] 张珂飞, 钟永嘉, 孙丽莉, 廖红. 植物有益伯克霍尔德氏菌的研究进展及其在农业中的应用[J]. 微生物学报, 2021, 61(8): 2205-2218. ZHANG KF, ZHONG YJ, SUN LL, LIAO H. Research progress of plant-associated beneficial Burkholderia and its application in agriculture. Plant-associated beneficial Burkholderia[J]. Acta Microbiologica Sinica, 2021, 61(8): 2205-2218(in Chinese).
    [26] ZHOU C, MA ZY, ZHU L, XIAO X, XIE Y, ZHU J, WANG JF. Rhizobacterial strain Bacillus megaterium BOFC15 induces cellular polyamine changes that improve plant growth and drought resistance[J]. International Journal of Molecular Sciences, 2016, 17(6): 976.
    [27] LOZO J, DANOJEVIĆ D, JOVANOVIĆ Ž, NENADOVIĆ Ž, FIRA D, STANKOVIĆ S, RADOVIĆ S. Genotype-dependent antioxidative response of four sweet pepper cultivars to water deficiency as affected by drought-tolerant Bacillus safensis SS-2.7 and Bacillus thuringiensis SS-29.2 strains[J]. Horticulturae, 2022, 8(3): 236.
    [28] PRASANNA KUMAR B, TRIMURTULU N, VIJAYA GOPAL A, NAGARAJU Y. Impact of culturable endophytic bacteria on soil aggregate formation and peanut (Arachis hypogaea L.) growth and yield under drought conditions[J]. Current Microbiology, 2022, 79(10): 308.
    [29] MESELE A, YITBARK W, TESFAYE A, ENRIQUE G, FRANCISCO JJ. The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants[J]. Agricultural Water Management, 2022, 272: 107831.
    [30] SANDHYA V, ALI SZ, VENKATESWARLU B, REDDY G, GROVER M. Effect of osmotic stress on plant growth promoting Pseudomonas spp.[J]. Archives of Microbiology, 2010, 192(10): 867-876.
    [31] IGIEHON NO, BABALOLA OO, AREMU BR. Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress[J]. BMC Microbiology, 2019, 19(1): 159.
    [32] HERNÁNDEZ-FERNÁNDEZ G, GALÁN B, CARMONA M, CASTRO L, GARCÍA JL. Transcriptional response of the xerotolerant Arthrobacter sp. Helios strain to PEG-induced drought stress[J]. Frontiers in Microbiology, 2022, 13: 1009068.
    [33] SANTACRUZ-CALVO L, GONZÁLEZ-LÓPEZ J, MANZANERA M. Arthrobacter siccitolerans sp. nov., a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 11): 4174-4180.
    [34] LI SY, YANG SS, WEI XM, JIAO S, LUO W, CHEN WM, WEI GH. Reduced trace gas oxidizers as a response to organic carbon availability linked to oligotrophs in desert fertile islands[J]. The ISME Journal, 2023, 17(8): 1257-1266.
    [35] ALLISON SD. Microbial drought resistance may destabilize soil carbon[J]. Trends in Microbiology, 2023, 31(8): 780-787.
    [36] 李萍, 滕长才, 刘玉皎, 张金发, 侯万伟, 何涛, 张晓玲, 王建忠. 青海一株蚕豆根瘤菌的鉴定及抗旱性评价[J]. 微生物学报, 2022, 62(10): 4030-4046. LI P, TENG CC, LIU YJ, ZHANG JF, HOU WW, HE T, ZHANG XL, WANG JZ. Identification of Vicia faba Rhizobium and drought resistance verification in arid region of Qinghai[J]. Acta Microbiologica Sinica, 2022, 62(10): 4030-4046(in Chinese).
    [37] NIU XG, SONG LC, XIAO YN, GE WD. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2017, 8: 2580.
    [38] ROBERSON EB, FIRESTONE MK. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp.[J]. Applied and Environmental Microbiology, 1992, 58(4): 1284-1291.
    [39] KHAN N, BANO A, ALI BABAR M. The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria[J]. Symbiosis, 2017, 72(3): 195-205.
    [40] SANDHYA V, SK Z A, GROVER M, REDDY G, VENKATESWARLU B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils, 2009, 46(1): 17-26.
    [41] FAHAD S, HUSSAIN S, BANO A, SAUD S, HASSAN S, SHAN D, KHAN FA, KHAN F, CHEN YT, WU C, TABASSUM MA, CHUN MX, AFZAL M, JAN A, JAN MT, HUANG JL. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment[J]. Environmental Science and Pollution Research, 2015, 22(7): 4907-4921.
    [42] SCHALK IJ, HANNAUER M, BRAUD A. New roles for bacterial siderophores in metal transport and tolerance[J]. Environmental Microbiology, 2011, 13(11): 2844-2854.
    [43] BURRELL M, HANFREY CC, MURRAY EJ, STANLEY-WALL NR, MICHAEL AJ. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation[J]. The Journal of Biological Chemistry, 2010, 285(50): 39224-39238.
    [44] ABALOS D, JEFFERY S, SANZ-COBENA A, GUARDIA G, VALLEJO A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency[J]. Agriculture, Ecosystems and Environment, 2014, 189: 136-144.
    [45] VORHOLT JA, VOGEL C, CARLSTRÖM CI, MÜLLER DB. Establishing causality: opportunities of synthetic communities for plant microbiome research[J]. Cell Host & Microbe, 2017, 22(2): 142-155.
    [46] ARMANHI JSL, de SOUZA RSC, BIAZOTTI BB, YASSITEPE JECT, ARRUDA P. Modulating drought stress response of maize by a synthetic bacterial community[J]. Frontiers in Microbiology, 2021, 12: 747541.
    [47] PETRILLO C, VITALE E, AMBROSINO P, ARENA C, ISTICATO R. Plant growth-promoting bacterial consortia as a strategy to alleviate drought stress in Spinacia oleracea[J]. Microorganisms, 2022, 10(9): 1798.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

季翠,骆晶晶,刁琦,王依嘉,姜雪婷,王一腾,钱怡雯,盛下放,何琳燕. 内蒙古和海南干旱地区芽孢杆菌和伯克霍德尔菌的耐旱性[J]. 微生物学通报, 2024, 51(10): 4118-4131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-02-04
  • 录用日期:2024-04-30
  • 在线发布日期: 2024-10-08
  • 出版日期: 2024-10-20
文章二维码