科微学术

微生物学通报

黄骅盐碱地玉米根系内生真菌分离及耐盐促生功能
作者:
基金项目:

国家自然科学基金(32201293);河北省教育厅科学研究项目(BJK2023046);河北省省属高等学校基本科研业务费项目(KY2022104)


Isolation of endophytic fungi from the roots of maize in the saline-alkaline land in Huanghua and screening of strains improving salt tolerance and growth of maize
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 土壤盐渍化是影响玉米产量的主要因素之一,植物内生真菌可显著提高植物抗逆性,促进生长发育,玉米内生真菌的研究对玉米增产具有重要意义。【目的】 探究从黄骅盐碱地玉米根系分离的内生真菌的促生特性及对玉米植株的促生效果,为盐碱地玉米增产提供理论依据与材料支持。【方法】 采用组织块法从玉米根系中分离内生真菌并通过浸种实验筛选在NaCl胁迫下对玉米种子萌发具有促进效果的内生真菌;利用形态学和分子生物学相结合的方法对筛选到的内生真菌进行鉴定并测定其解磷解钾、分泌吲哚乙酸(indole-3-acetic acid, IAA)及产铁载体能力等促生特性;采用盆栽试验探究筛选的内生真菌在NaCl胁迫下对玉米生物量、株高、根长、SPAD值及抗氧化酶和丙二醛(malondialdehyde, MDA)等的影响,评价内生真菌对提高玉米促生耐盐效果的影响。【结果】 从玉米根系中共分离得到25株内生真菌,其中内生真菌DYM7和DYM11在0.15 mol/L NaCl胁迫下对玉米种子萌发具有显著促进效果,萌发率达90%;通过形态学与分子生物学鉴定,菌株DYM7为土栖棘壳孢(Setophoma terrestris),菌株DYM11为嘴突凸脐蠕孢(Exserohilum rostratum),其均具有解钾、产铁载体、分泌IAA的能力;在NaCl胁迫下,经菌株DYM7和DYM11处理提高了玉米的株高和根长,同时提高了超氧化物歧化酶(superoxide oxidase, SOD)和过氧化物酶(peroxidase, POD)活性,降低了MDA含量。经菌株DYM11处理的玉米的地上干重和地下干重较对照显著提高了16.43%和22.17%。【结论】 筛选的内生真菌通过提高玉米抗氧化酶活性、增加根长及株高、降低MDA含量,从而提高玉米对盐胁迫的耐受能力并促进玉米生长,为滨海盐碱区有益微生物增强农作物盐耐受性并提高其产量提供理论依据和材料支持。

    Abstract:

    [Background] Soil salinity is one of the main factors affecting maize yield, and endophytic fungi can significantly improve the resistance and growth of plants. Studying the endophytic fungi of maize is of great significance to increase maize yield. [Objective] To study the growth-promoting effects of endophytic fungi isolated from the roots of maize growing in the saline-alkaline land in Huanghua and the growth-promoting effects of the fungi on maize plants, so as to provide a theoretical basis and material support for increasing the maize yield in saline-alkaline land. [Methods] The tissue culture method was used to isolate endophytic fungi from the roots of maize. The seed soaking experiments were carried out to screen out the strains capable of promoting the germination of maize seeds under NaCl stress. The strains screened out were identified by morphological observation and molecular biological methods and characterized for the growth-promoting properties such as phosphorus- and potassium-solubilizing, indole-3-acetic acid (IAA)-secreting, and siderophore-producing abilities. Pot experiments were conducted to evaluate the effects of the strains on the biomass, plant height, root length, SPAD value, superoxide oxidase (SOD) activity, peroxidase (POD) activity, and malondialdehyde (MDA) content of maize plants under NaCl stress. [Results] A total of 25 strains of endophytic fungi were isolated from the roots of maize, among which the strains DYM7 and DYM11 significantly promoted the germination of maize seeds exposed to 0.15 mol/L NaCl, with the germination rate reaching 90%. DYM7 was identified as Setophoma terrestris and DYM11 as Exserohilum rostratum, both of which had the abilities of solubilizing potassium, producing siderophores, and secreting IAA. Under NaCl stress, strains DYM7 and DYM11 increased the plant height, root length, and SOD and POD activities and reduced the MDA content of maize. Moreover, strain DYM11 increased the aboveground dry weight and underground dry weight of maize plants by 16.43% and 22.17%, respectively, compared with the control. [Conclusion] The endophytic fungal strains capable of improving the salt tolerance and growth of maize by increasing the antioxidant enzyme activities, root length, and plant height, and decreasing the MDA content were screened out in this study. This study provides a theoretical basis and material support for the application of beneficial microbial in coastal saline-alkaline areas in improving the salt tolerance and yields of crops.

    参考文献
    [1] TANG ZS, AN H, DENG L, WANG YY, ZHU GY, SHANGGUAN ZP. Effect of desertification on productivity in a desert steppe[J]. Scientific Reports, 2016, 6: 27839.
    [2] WEI W, GUO ZC, SHI PJ, ZHOU L, WANG XF, LI ZY, PANG SF, XIE BB. Spatiotemporal changes of land desertification sensitivity in Northwest China from 2000 to 2017[J]. Journal of Geographical Sciences, 2021, 31(1): 46-68.
    [3] CUI ZQ, KANG HL, WANG WL, GUO WZ, GUO MM, CHEN ZX. Vegetation restoration restricts rill development on dump slopes in coalfields[J]. The Science of the Total Environment, 2022, 820: 153203.
    [4] MUKHOPADHYAY R, SARKAR B, JAT HS, SHARMA PC, BOLAN NS. Soil salinity under climate change: challenges for sustainable agriculture and food security[J]. Journal of Environmental Management, 2021, 280: 111736.
    [5] YADAV AN, SINGH J, RASTEGARI AA, YADAV N. Plant Microbiomes for Sustainable Agriculture[M]. Cham: Springer, 2020.
    [6] GUO LD, HUANG GR, WANG Y. Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing[J]. Journal of Integrative Plant Biology, 2008, 50(8): 997-1003.
    [7] ZUCCARO A, LAHRMANN U, LANGEN G. Broad compatibility in fungal root symbioses[J]. Current Opinion in Plant Biology, 2014, 20: 135-145.
    [8] LAU JA, LENNON JT. Rapid responses of soil microorganisms improve plant fitness in novel environments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(35): 14058-14062.
    [9] YADAV V, KUMAR M, DEEP DK, KUMAR H, SHARMA R, TRIPATHI T, TUTEJA N, SAXENA AK, JOHRI AK. Withdrawal: a phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant[J]. The Journal of Biological Chemistry, 2021, 296: 100457.
    [10] BULTMAN TL, BELL GD. Interaction between fungal endophytes and environmental stressors influences plant resistance to insects[J]. Oikos, 2003, 103(1): 182-190.
    [11] BUSBY PE, RIDOUT M, NEWCOMBE G. Fungal endophytes: modifiers of plant disease[J]. Plant Molecular Biology, 2016, 90(6): 645-655.
    [12] GILL SS, GILL R, TRIVEDI DK, ANJUM NA, SHARMA KK, ANSARI MW, ANSARI AA, JOHRI AK, PRASAD R, PEREIRA E, VARMA A, TUTEJA N. Piriformospora indica: potential and significance in plant stress tolerance[J]. Frontiers in Microbiology, 2016, 7: 332.
    [13] RANA KL, KOUR D, YADAV AN. Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications[J]. Research Journal of Biotechnology, 2019, 14(10): 142-162.
    [14] 侯姣姣, 孙涛, 余仲东, 康永祥, 布芳芳, 甘明旭. 盐胁迫下内生真菌对国槐幼苗生长及生理的影响[J]. 浙江农林大学学报, 2017, 34(2): 294-300. HOU JJ, SUN T, YU ZD, KANG YX, BU FF, GAN MX. Effect of endophytic fungi on growth and physiology of saline stressed Sophora japonica seedlings[J]. Journal of Zhejiang A&F University, 2017, 34(2): 294-300(in Chinese).
    [15] ALI R, GUL H, RAUF M, ARIF M, HAMAYUN M, HUSNA, KHILJI SA, UD-DIN A, AHMAD SAJID Z, LEE IJ. Growth-promoting endophytic fungus (Stemphylium lycopersici) ameliorates salt stress tolerance in maize by balancing ionic and metabolic status[J]. Frontiers in Plant Science, 2022, 13: 890565.
    [16] CHEN D, SALEEM M, CHENG JH, Mi J, CHU PF, TUVSHINTOGTOKH I, HU SJ, BAI YF. Effects of aridity on soil microbial communities and functions across soil depths on the Mongolian Plateau[J]. Functional Ecology, 2019, 33: 1561-1571.
    [17] 刘海涛, 高彦花. 滨海盐碱地土壤水盐动态研究[J]. 山东农业工程学院学报, 2019, 36(5): 26-29. LUI HT, GAO YH. Study on water-salt dynamic in coastal salt and alkaline land[J]. Journal of Shandong Agriculture and Engineering University, 2019, 36(5): 26-29(in Chinese).
    [18] 姚英. 闽楠内生真菌多样性及其促生作用机制研究[D]. 贵阳: 贵州大学硕士学位论文, 2020. YAO Y. Study on the diversity of endophytic fungi and its promoting mechanism in Phoebe bournei[D]. Guiyang: Master’s Thesis of Guizhou University, 2020(in Chinese).
    [19] 詹寿发, 卢丹妮, 毛花英, 熊蓉露, 黄丹, 陈晔. 2株溶磷、解钾与产IAA的内生真菌菌株的筛选、鉴定及促生作用研究[J]. 中国土壤与肥料, 2017(3): 142-151. YAN SF, LU DN, MAO HY, XIONG RL, HUANG D, CHEN Y. Isolation of two phosphate/potaaium-solubilizing and IAA-producing strains of endophytic fungi and their plant growth promoting function[J]. Soils and Fertilizers Sciences in China, 2017(3): 142-151(in Chinese).
    [20] 孙红启. 铁载体和铁离子对细菌生长过程的影响[D]. 济南: 山东大学博士学位论文, 2008. SUN HQ. Effects of siderophore and ferric ion on bacterial growth process[D]. Jinan: Doctoral Dissertation of Shandong University, 2008(in Chinese).
    [21] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979. WEI JC. Handbook of Fungal Identification[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1979(in Chinese).
    [22] 孟亚南. 玉米大斑病菌附着胞发育调控新模式及附着胞相关蛋白鉴定[D]. 保定: 河北农业大学博士学位论文, 2022. MENG YN. A new model of development regulation of appressorium and identification of appressorium-related proteins in maize leaf blight[D]. Baoding: Doctoral Dissertation of Hebei Agricultural University, 2022(in Chinese).
    [23] 陈佳兴, 秦琴, 邱树毅, 王雪郦. 磷尾矿土壤中解磷细菌的筛选及解磷能力的测定[J]. 生物技术通报, 2018, 34(6): 183-189. CHEN JX, QIN Q, QIU SY, WANG XL. Isolation, identification of phosphate-solubilizing bacteria derived from phosphate tailing soil and their capacities[J]. Biotechnology Bulletin, 2018, 34(6): 183-189(in Chinese).
    [24] 袁继鑫. 野生蓝莓菌根真菌的分离、鉴定及接种效应[D]. 北京: 北京林业大学硕士学位论文, 2013. YUAN JX. The separation, identification and inoculation effect of mycorrhizal fungi isolated from wild blueberries[D]. Beijing: Master’s Thesis of Beijing Forestry University, 2013(in Chinese).
    [25] 侯力峰. 三种荒漠植物深色有隔内生真菌物种多样性和耐盐性研究[D]. 保定: 河北大学博士学位论文, 2020. HOU LF. Species diversity and salt tolerance of dark septate endophytes in three desert plants[D]. Baoding: Doctoral Dissertation of Hebei University, 2020(in Chinese).
    [26] TUTEJA N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007, 428: 419-438.
    [27] POTSHANGBAM M, DEVI SI, SAHOO D, STROBEL GA. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L.[J]. Frontiers in Microbiology, 2017, 8: 325.
    [28] POVEDA J, ABRIL-URIAS P, ESCOBAR C. Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi[J]. Frontiers in Microbiology, 2020, 11: 992.
    [29] 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. ZHANG GY, WANG YH, GUO M, ZHANG TT, WANG B, LIU HM. Isolation and identification of a cellulase-producing endophytic fungus in Paris polyphylla var. yunnanensis[J]. Biotechnology Bulletin, 2022, 38(2): 95-104(in Chinese).
    [30] 俞雯雯. 嘴突凸脐蠕孢菌Y9511对千金子防除潜力的研究[D]. 广州: 华南农业大学硕士学位论文, 2020. YU WW. Study on the control potential of Exserohilum rostratum strain Y9511 against Leptochloa chinensis (L.) nees[D]. Guangzhou: Master’s Thesis of South China Agricultural University, 2020(in Chinese).
    [31] POVEDA J, RODRÍGUEZ VM, DÍAZ-URBANO M, SKLENÁŘ F, SAATI-SANTAMARÍA Z, MENÉNDEZ E, VELASCO P. Endophytic fungi from kale (Brassica oleracea var. acephala) modify roots-glucosinolate profile and promote plant growth in cultivated Brassica species. First description of Pyrenophora gallaeciana[J]. Frontiers in Microbiology, 2022, 13: 981507.
    [32] 张鹏, 任茜, 孟思宇, 魏小星, 鲍根生. 内生真菌对盐胁迫下紫花针茅种子萌发和幼苗生长的研究[J]. 草业学报, 2022, 31(10): 110-121. ZHANG P, REN X, MENG SY, WEI XX, BAO GS. Effects of Epichloё endophyte on seed germination and seedling growth of Stipa purpurea under salt stress[J]. Acta Prataculturae Sinica, 2022, 31(10): 110-121(in Chinese).
    [33] BAKHSHI S, ESHGHI S, BANIHASHEMI Z. Application of candidate endophytic fungi isolated from extreme desert adapted trees to mitigate the adverse effects of drought stress on maize (Zea mays L.)[J]. Plant Physiology and Biochemistry: PPB, 2023, 202: 107961.
    [34] HOU LF, LI X, HE XL, ZUO YL, ZHANG DD, ZHAO LL. Effect of dark septate endophytes on plant performance of Artemisia ordosica and associated soil microbial functional group abundance under salt stress[J]. Applied Soil Ecology, 2021, 165: 103998.
    [35] HOUIDA S, YAKKOU L, KAYA LO, BILEN S, FADIL M, RAOUANE M, EL HARTI A, AMGHAR S. Biopriming of maize seeds with plant growth‐promoting bacteria isolated from the earthworm Aporrectodea molleri: effect on seed germination and seedling growth[J]. Letters in Applied Microbiology, 2022, 75(1): 61-69.
    [36] 王斌, 张腾霄, 刘超群, 祖余洋, 李艳芳, 孟祥才. 非生物胁迫对药用植物活性氧代谢影响的研究进展[J]. 现代中药研究与实践, 2022, 36(3): 94-98. WANG B, ZHANG TX, LIU CQ, ZU YY, LI YF, MENG XC. Research progress in the effects of abiotic stress on reactive oxygen species metabolism in medicinal plants[J]. Research and Practice on Chinese Medicines, 2022, 36(3): 94-98(in Chinese).
    [37] PAN XY, QIN Y, YUAN ZL. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity[J]. Symbiosis, 2018, 76(2): 109-116.
    [38] LING QH, HUANG WH, JARVIS P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana[J]. Photosynthesis Research, 2011, 107(2): 209-214.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张静,张腾,肖耀鹏,葛申奥,徐璐,刘雪颖,侯力峰,曾凡力. 黄骅盐碱地玉米根系内生真菌分离及耐盐促生功能[J]. 微生物学通报, 2024, 51(10): 4089-4103

复制
分享
文章指标
  • 点击次数:89
  • 下载次数: 185
  • HTML阅读次数: 247
  • 引用次数: 0
历史
  • 收稿日期:2024-01-19
  • 录用日期:2024-02-22
  • 在线发布日期: 2024-10-08
  • 出版日期: 2024-10-20
文章二维码