科微学术

微生物学通报

随机过程主导吕梁不同生态系统土壤真菌群落构建
作者:
基金项目:

太原市重大人才工作站项目(TYSGJ202201)


Stochastic processes dominate the assembly of soil fungal communities in different ecosystems of Lüliang
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】 群落构建机制是微生物生态学关注的热点问题,得出的结论在局域尺度下是否完全适用仍不确定。【目的】 在较小的局域尺度下对群落构建机制进行验证,补充相关理论的适用性。【方法】 以山西吕梁地区分布的森林、灌丛和草地生态系统中土壤真菌群落作为研究对象,探究不同生态系统真菌群落组成结构和构建机制的变化。【结果】 通过高通量测序和统计分析,表明土壤真菌群落在不同生态系统间表现出独特的生物地理分布格局,森林生态系统的Sobs、Ace和Chao1指数分别为699.50、835.22和838.36,显著高于其余2个生态系统(P<0.05);通过网络分析及Zi-Pi值的计算,表明网络模块具有地区差异性,不同生态系统间关键物种数量和种类均出现显著变化。通过回归分析、中性群落模型构建,以及βNTI、RCbray值的计算,|βNTI|<2,森林、灌丛和草地生态系统的群落层面迁移率为0.003、0.001和0.001,出现显著的距离-多样性衰减分布格局(R=-0.059, P=0.018),由此推断随机过程是本研究区真菌群落构建的主要驱动因子。【结论】 相较于优势物种[绿僵菌属(Metarhizium)、赤霉属(Gibberella)等],关键物种[地孔菌属(Geopora)、木霉属(Trichoderma)等]参与了共生网络形成和群落构建过程,拥有更广泛的功能,对不同生态系统的适应性更强;在该局域尺度下,确定过程和随机过程均参与了群落构建,但随机过程占主导。本研究旨在为黄河流域吕梁地区不同生态系统间的保护措施提供一定的科学依据,为宏观生态学中理论应用的普适性提供更多的线索。

    Abstract:

    [Background] The mechanism of community assembly is a hot topic in microbial ecology, and it remains uncertain whether the conclusions are completely applicable on a local scale. [Objective] To verify the community assembly mechanism on a small local scale and evaluate the applicability of relevant theories. [Methods] We compared the composition and assembly mechanisms of soil fungal communities in the forest, shrub, and grassland ecosystems in Lüliang, Shanxi. [Results] The results of high-throughput sequencing and statistical analysis indicated that the soil fungal communities presented different biogeographic distribution patterns in different ecosystems. The Sobs, ACE, and Chao1 indices of soil fungi in the forest ecosystem were 699.50, 835.22, and 838.36, respectively, which were higher than those of the other two ecosystems (P<0.05). The network analysis and Zi-Pi values showed that the network modules had regional differences, and the number and composition of keystone species were different among different ecosystems. According to the regression results, neutral community model analysis results, |βNTI|<2, RCbray values, the community migration rates are 0.003, 0.001 and 0.001, and a significant distance-delay distribution pattern (R=-0.059, P=0.018), we hypothesized that stochastic processes dominated the assembly of fungal communities in this study area. [Conclusion] The keystone species (Geopora, Trichoderma, etc.) are involved in the symbiotic network formation and community assembly and demonstrate broader functions and stronger adaptability to different ecosystems than the dominant species (Metarhizium, Gibberella, etc.). On this local scale, both deterministic and stochastic processes drive community assembly, with the former being dominant. This study aims to provide a scientific basis for the protection of different ecosystems in Lüliang of the Yellow River basin and enrich the clues for the universal application of theories in macroecology.

    参考文献
    [1] XIA ZW, BAI E, WANG QK, GAO DC, ZHOU JD, JIANG P, WU JB. Biogeographic distribution patterns of bacteria in typical Chinese forest soils[J]. Frontiers in Microbiology, 2016, 7: 1106.
    [2] JIAO S, WANG JM, WEI GH, CHEN WM, LU YH. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances[J]. Chemosphere, 2019, 235: 248-259.
    [3] TEDERSOO L, BAHRAM M, CAJTHAML T, POLME S, HIIESALU I, ANSLAN S, HAREND H, BUEGGER F, PRITSCH K, KORICHEVA J, ABARENKOV K. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent[J]. The ISME Journal, 2016, 10(2): 346-362.
    [4] YANG T, TEDERSOO L, LIU X, GAO GF, DONG K, ADAMS JM, CHU HY. Fungi stabilize multi‐kingdom community in a high elevation timberline ecosystem[J]. iMeta, 2022, 1(4): 49.
    [5] LIU D, WANG HL, An SS, BHOPLE P, DAVLATBEKOV F. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils[J]. Science of the Total Environment, 2019, 660: 1058-1069.
    [6] XU TL, SHEN YW, DING ZJ, ZHU B. Seasonal dynamics of microbial communities in rhizosphere and bulk soils of two temperate forests[J]. Rhizosphere, 2023, 25: 100673.
    [7] HANNULA SE, KIELAK AM, STEINAUER K, HUBERTY M, JONGEN R, DELONG JR, HEINEN R, BEZEMER TM. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities[J]. mBio, 2019, 10(6): 1110-1128.
    [8] SHEN CC, NI YY, LIANG WJ, WANG JJ, CHU HY. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582.
    [9] WANG Q, LIU K, TAO K, HOU TP. Biogeographical patterns and drivers of bacterial community in the Qinghai-Tibetan Plateau[J]. Applied Soil Ecology, 2023, 183: 104757.
    [10] CHEN WQ, WANG JY, CHEN X, MENG ZX, XU R, DUOJI DZ, ZHANG JH, HE J, WANG ZG, CHEN J, LIU KX, HU TM. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau[J]. Soil Biology and Biochemistry, 2022, 172: 108766.
    [11] XIONG C, LU YH. Microbiomes in agroecosystem: diversity, function and assembly mechanisms[J]. Environmental Microbiology Reports, 2022, 14(6): 833-849.
    [12] JIANG MT, DELGADO‐BAQUERIZO M, YUAN MM, DING JX, YERGEAU E, ZHOU JZ, CROWTHER TW, LIANG YT. Home‐based microbial solution to boost crop growth in low‐fertility soil[J]. New Phytologist, 2023, 239(2): 752-765.
    [13] JANSSON JK, MCCLURE R, EGBERT RG. Soil microbiome engineering for sustainability in a changing environment[J]. Nature Biotechnology, 2023, 41: 1716-1728.
    [14] DUAN YL, WANG XY, WANG LL, LIAN J, WANG WF, WU FS, LI YL, LI YQ. Biogeographic patterns of soil microbe communities in the deserts of the Hexi Corridor, Northern China[J]. Catena, 2022, 211: 106026.
    [15] ZHANG TT, GRUBE M, WEI XL. Host selection tendency of key microbiota in arid desert lichen crusts[J]. iMeta, 2023, 2(4): e138.
    [16] XU TL, CHEN X, HOU YH, ZHU B. Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpine ecosystems on the Tibetan Plateau[J]. Plant and Soil, 2020, 459(1/2): 137-153.
    [17] GUI H, BREED M, LI Y, XU Q, YANG JB, WANASINGHE DN, LI YJ, XU JC, MORTIMER P. Continental-scale insights into the soil microbial co-occurrence networks of Australia and their environmental drivers[J]. Soil Biology and Biochemistry, 2023, 186: 109177.
    [18] ZHENG HP, YANG TJ, Bao YZ, HE PP, YANG KM, MEI XL, WEI Z, XU YC, SHEN QR, BANERJEE S. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics[J]. Soil Biology and Biochemistry, 2021, 157: 108230.
    [19] CASAMAYOR EO, FIERER N. Using network analysis to explore co-occurrence patterns in soil microbial communities[J]. The ISME Journal, 2012, 6(2): 343-351.
    [20] QIAO YZ, WANG TT, HUANG QW, GUO HY, ZHANG H, XU QC, SHEN QR, LING N. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence[J]. Soil Biology and Biochemistry, 2024, 188: 109231.
    [21] HUO XY, REN CJ, WANG DX, WU RQ, WANG YS, LI ZF, HUANG DC, QI HY. Microbial community assembly and its influencing factors of secondary forests in Qinling Mountains[J]. Soil Biology and Biochemistry, 2023, 184: 109075.
    [22] LIAO WF, TONG D, NIE XD, LIU YJ, RAN FW, LIAO SS, CHEN J, ZENG AQ, LI ZW. Assembly process and source tracking of microbial communities in sediments of Dongting Lake[J]. Soil Ecology Letters, 2023, 5(4): 230173.
    [23] ZHOU SYD, LIE ZY, LIU XJ, PENUELAS J, SU XX, LIU ZF, LIU JX. Distinct patterns of soil bacterial and fungal community assemblages in subtropical forest ecosystems under warming[J]. Global Change Biology, 2023, 29(6): 1501-1513.
    [24] CAO Y, CHAI YF, JIAO S, LI XY, WANG XB, ZHANG YN, YUE M. Bacterial and fungal community assembly in relation to soil nutrients and plant growth across different ecoregions of shrubland in Shaanxi, Northwestern China[J]. Applied Soil Ecology, 2022, 173: 104385.
    [25] WANG PD, LI SP, YANG X, ZHOU JZ, SHU WS, JIANG L. Mechanisms of soil bacterial and fungal community assembly differ among and within islands[J]. Environmental Microbiology, 2020, 22(4): 1559-1571.
    [26] ZHAO PY, LIU JX, JIA T, WANG YG, CHAI BF. Environmental filtering drives bacterial community structure and function in a subalpine area of Northern China[J]. Journal of Basic Microbiology, 2019, 59(3): 337-347.
    [27] ZHAO PY, LIU JX, JIA T, LUO ZM, LI C, CHAI BF. Assembly mechanisms of soil bacterial communities in subalpine coniferous forests on the Loess Plateau, China[J]. Journal of Microbiology, 2019, 57(6): 461-469.
    [28] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
    [29] 黄磊, 张然, 陈雅丽, 牛翠云, 翁莉萍, 马杰, 李永涛, 张哲. 氮肥施用和秸秆还田对东北地区褐土稳定性有机碳的影响[J]. 农业环境科学学报, 2024, 43(3): 581-589. HUANG L, ZHANG R, CHEN YL, NIU CY, WENG LP, MA J, LI YT, ZHANG Z. Effects of nitrogen fertilizer application and straw returning on stable organic carbon of cinnamon soil[J]. Journal of Agro-Environment Science, 2024, 43(3): 581-589(in Chinese).
    [30] STEGEN JC, LIN XJ, KONOPKA AE, FREDRICKSON JK. Stochastic and deterministic assembly processes in subsurface microbial communities[J]. The ISME Journal, 2012, 6(9): 1653-1664.
    [31] STEGEN JC, LIN XJ, FREDRICKSON JK, CHEN XY, KENNEDY DW, MURRAY CJ, ROCKHOLD ML, KONOPKA A. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069-2079.
    [32] STEGEN JC, LIN XJ, FREDRICKSON JK, KONOPKA AE. Estimating and mapping ecological processes influencing microbial community assembly[J]. Frontiers in Microbiology, 2015, 6: 370.
    [33] SLOAN WT, LUNN M, WOODCOCK S, HEAD IM, NEE S, CURTIS TP. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental Microbiology, 2006, 8(4): 732-740.
    [34] BANERJEE S, SCHLAEPPI K, van der HEIJDEN MGA. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576.
    [35] HU WG, RAN JZ, DONG LW, DU QJ, JI MF, YAO SR, SUN Y, GONG CM, HOU QQ, GONG HY, CHEN RF, LU JL, XIE SB, WANG ZQ, HUANG H, LI XW, XIONG JL, XIA R, WEI MH, ZHAO DM, et al. Aridity-driven shift in biodiversity: soil multifunctionality relationships[J]. Nature Communications, 2021, 12(1): 5350-5364.
    [36] 江思源, 程雪飞, 张金池, 唐瀛洲, 聂晖, 王宇浩, 刘京. 毛竹入侵对杉木人工林表层土壤真菌多样性及群落结构的影响[J]. 东北林业大学学报, 2023, 51(2): 91-96. JIANG SY, CHENG XF, ZHANG JC, TANG YZ, NIE H, WANG YH, LIU J. Effects of phyllostachys edulis invasion on surface soil fungal diversity and community structure in Cunninghamia lanceolate plantation[J]. Journal of Northeast Forestry University, 2023, 51(2): 91-96(in Chinese).
    [37] 江北, 吕梦霞, 蒋冬花. 曲霉属真菌活性代谢产物及在农业生产中的应用研究进展[J]. 微生物学杂志, 2019, 39(2): 103-110. JIANG B, LÜ MX, JIANG DH. Advances in Aspergillus active metabolites and application in agricultural production[J]. Journal of Microbiology, 2019, 39(2): 103-110(in Chinese).
    [38] 颜培, 杜远达, 姜爱霞, 郭笃发. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828. YAN P, DU YD, JIANG AX, GUO DF. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828(in Chinese).
    [39] 卢雨萌. 长期生草对梨园土壤微生态环境和果实品质的影响[D]. 烟台: 鲁东大学硕士论文, 2022. LU YM. Effects of long-term grassing on soil micro-ecological environment and fruit quality in pear orchard[D]. Yantai: Master’s Thesis of Ludong University, 2022(in Chinese).
    [40] 张璐, 吕楠, 程临海. 干旱区生态系统稳态转换及其预警信号: 基于景观格局特征的识别方法[J]. 生态学报, 2023, 43(15): 6486-6498. ZHANG L, LÜ N, CHENG LH. Regime shifts and early warning signals in dryland ecosystems: an identification method based on landscape pattern characteristics[J]. Acta Ecologica Sinica, 2023, 43(15): 6486-6498(in Chinese).
    [41] 宗文贞. 单宁对高寒草甸土壤氮分解过程的影响机制研究[D]. 兰州: 兰州大学硕士论文, 2023. ZONG WZ. Study on the mechanism of influence of Tannins on soil nitrogen decomposition process in alpine meadow[D]. Lanzhou: Master’s Thesis of Lanzhou University, 2023(in Chinese).
    [42] 王永龙, 张旋, 徐颖, 赵艳玲, 王嘉琦, 张煜佳, 杨颜慈. 包头市公园林下土壤EM真菌的多样性与群落构建机制[J]. 应用生态学报, 2023, 34(5): 1225-1234. WANG YL, ZHNAG X, XU Y, ZHAO YL, WANG JQ, ZHANG YJ, YANG YC. Diversity and community assembly mechanism of soil EM fungi in urban parks of Baotou City, China[J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1225-1234(in Chinese).
    [43] 周启星, 侯泽林, 莫凡. 灌木林下土壤有机质积累及影响因素研究进展[J]. 环境科学研究, 2023, 36(11): 2169-2178. ZHOU QX, HOU ZL, MO F. Research progress on accumulation of soil organic matter in shrubs and its influence factors[J]. Research of Environmental Sciences, 2023, 36(11): 2169-2178(in Chinese).
    [44] 李聪, 乌有汗, 姚庆智. 内蒙古地区两种落叶松根系可培养内生真菌群落组成与多样性[J]. 菌物学报, 2023, 42(5): 1045-1062. LI C, WU YH, YAO QZ. Composition and diversity of culturable endophytic fungal community in roots of two larch species in Inner Mongolic[J]. Mycosystema, 2023, 42(5): 1045-1062(in Chinese).
    [45] RAYBURG S, NEAVE M, THOMPSON-LAING J. The impact of flood frequency on the heterogeneity of floodplain surface soil properties[J]. Soil Systems, 2023, 7(3): 63.
    [46] 刘敏, 张涛, 李龙, 峥嵘, 杨传东, 王祖华. 旅游踩踏对梵净山植物根系真菌群落的影响[J]. 中国环境科学, 2023, 43(4): 2017-2027. LIU M, ZHANG T, LI L, ZHENG R, YANG CD, WANG ZH. The effects of tourism-related trampling on the root-associated fungal community of Fanjing Mountain[J]. China Environmental Science, 2023, 43(4): 2017-2027(in Chinese).
    [47] OLESEN JM, BASCOMPTE J, DUPONT YL, JORDANO P. The modularity of pollination networks[J]. Proceedings of the National Academy Sciences of the United States of America, 2007, 104(50): 19891-19896.
    [48] 杨文焕, 甄玉, 姚植, 尹强, 黄晓慧, 李卫平. 高原盐化湖泊沉积物氮代谢特征解析[J]. 中国环境科学, 2023, 43(3): 1328-1339. YANG WH, ZHEN Y, YAO Z, YIN Q, HUANG XH, LI WP. Characterization for nitrogen metabolism of sediments in highland saline lake[J]. China Environmental Science, 2023, 43(3): 1328-1339(in Chinese).
    [49] JIAO S, LU YH. Soil pH and temperature regulate assembly processes of abundant and rare bacterial communities in agricultural ecosystems[J]. Environmental Microbiology, 2019, 22(3): 1052-1065.
    [50] CHEN WD, REN KX, ISABWE A, CHEN HH, LIU M, YANG J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons[J]. Microbiome, 2019, 7(1): 138.
    [51] JIAO S, CHU HY, ZHANG BG, WEI XR, CHEN WM, WEI GH. Linking soil fungi to bacterial community assembly in arid ecosystems[J]. iMeta, 2022, 1(1): e2.
    [52] ZELEZNIAK A, ANDREJEV S, PONOMAROVA O, MENDE DR, BORK P, PATILL KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities[J]. Proceedings of the National Academy of Sciences, 2015, 112(20): 6449-6454.
    [53] KRAFT NJB, VALENCIA R, ACKERLY DD. Functionaltraits and niche-based tree community assembly in an amazonian forest[J]. Science, 2008, 322: 580-582.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李玉靖,李瑞云,李乔,赵鹏宇,王月,田娜,和雪婷. 随机过程主导吕梁不同生态系统土壤真菌群落构建[J]. 微生物学通报, 2024, 51(10): 3987-4003

复制
分享
文章指标
  • 点击次数:111
  • 下载次数: 238
  • HTML阅读次数: 206
  • 引用次数: 0
历史
  • 收稿日期:2024-01-28
  • 录用日期:2024-03-23
  • 在线发布日期: 2024-10-08
  • 出版日期: 2024-10-20
文章二维码