科微学术

微生物学通报

节杆菌(Arthrobacter sp.) EpRS66 β-呋喃果糖苷酶重组表达及酶促合成低聚乳果糖
作者:
基金项目:

国家自然科学基金(32101884)


Recombinant expression of β-fructofuranosidase from Arthrobacter sp. EpRS66 and enzymatic synthesis of lactosucrose
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】 低聚乳果糖是一种新型的功能性低聚糖,具有改善肠道菌群及提高免疫力等功能,被应用于食品、饲料等行业,市场需求量逐年增加。β-呋喃果糖苷酶对乳糖的受体特异性较高,工业上常用来制备低聚乳果糖,但现有酶种转化率较低、生产成本较高。【目的】 挖掘新型 β-呋喃果糖苷酶基因,探究其酶学性质及制备低聚乳果糖的能力。【方法】 克隆节杆菌(Arthrobacter sp.) EpRS66的β-呋喃果糖苷酶基因,将其在大肠杆菌(Escherichia coli)中重组表达,研究重组酶的酶学性质,优化其催化制备低聚乳果糖的反应条件。【结果】 重组酶的最适温度为40 ℃,最适pH值为6.0,在pH 5.0-8.0范围内稳定性良好,在40 ℃的半衰期为20 min。利用重组酶制备低聚乳果糖,以15%蔗糖和15%乳糖为底物,在40 ℃、pH 6.0及加酶量25 μg/mL的条件下反应3 h后转化率最高达到32.2%;而在30%蔗糖和30%乳糖的高底物浓度下,转化率也可达到30.8%。【结论】 本研究获得了一种能有效催化形成低聚乳果糖的新型β-呋喃果糖苷酶,为工业化生产低聚乳果糖提供了新的选择。

    Abstract:

    [Background] Lactosucrose, a novel functional oligosaccharide, has been demonstrated capable of improving the gut microbiota and boosting the immunity of humans and animals. Since it is increasingly utilized in food and feed industries, the market demand for lactosucrose has been increasing year by year. The industrial production of lactosucrose mainly uses β-fructofuranosidases due to the high product specificity. However, the conversion rates of existing enzymes were generally low, which made the production cost remaining high. [Objective] To identify new β-fructofuranosidases for the enzymatic properties and industrial production of lactosucrose. [Methods] We identified a β-fructofuranosidase gene from Arthrobacter sp. EpRS66 and expressed it in Escherichia coli. Furthermore, we characterized the enzymatic properties of the recombinant β-fructofuranosidase and optimized the optimum reaction conditions for the production of lactosucrose. [Results] The recombinant enzyme showed the optimal performance at 40 ℃ and pH 6.0. It maintained good stability within the range of pH 5.0-8.0 and had a half-life of 20 min at 40 ℃. Under the reaction conditions of 40 ℃ and pH 6.0, the conversion rate of lactosucrose reached 32.2% at the time point of 3 h with substrates of 15% sucrose and 15% lactose and an enzyme addition of 25 μg/mL. Moreover, with high concentrations of substrates (30% sucrose and 30% lactose), the conversion rate reached 30.8%. [Conclusion] This study provides a novel β-fructofuranosidase that can effectively catalyze the formation of lactosucrose, offering a new choice for industrial production of lactosucrose.

    参考文献
    [1] OHKUSA T, OZAKI Y, SATO C, MIKUNI K, IKEDA H. Long-term ingestion of lactosucrose increases Bifidobacterium sp. in human fecal flora[J]. Digestion, 1995, 56(5): 415-420.
    [2] MIZOTE A, TANIGUCHI Y, TAKEI Y, KOYA-MIYATA S, KOHNO K, IWAKI K, KUROSE M, OKU K, CHAEN H, FUKUDA S. Lactosucrose inhibits body fat accumulation in rats by decreasing intestinal lipid absorption[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(3): 582-587.
    [3] 马依淼, 刘少莉, 郑义, 陈超, 曹永强, 杨贞耐. 低聚乳果糖对益生性植物乳杆菌冰淇淋加工特性的影响[J]. 中国乳品工业, 2021, 49(1): 25-30. MA YM, LIU SL, ZHENG Y, CHEN C, CAO YQ, YANG ZN. Effect of lactosucrose on the processing characteristics of probiotic Lactobacillus plantarum ice cream[J]. China Dairy Industry, 2021, 49(1): 25-30(in Chinese).
    [4] SILVÉRIO SC, MACEDO EA, TEIXEIRA JA, RODRIGUES LR. Perspectives on the biotechnological production and potential applications of lactosucrose: a review[J]. Journal of Functional Foods, 2015, 19: 74-90.
    [5] DUARTE LS, da NATIVIDADE SCHÖFFER J, LORENZONI ASG, RODRIGUES RC, RODRIGUES E, HERTZ PF. A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase[J]. Process Biochemistry, 2017, 55: 96-103.
    [6] LIU J, MA YM, ZHANG M, LAI TT, WANG YH, YANG ZN. Biosynthesis of lactosucrose by a new source of β-fructofuranosidase from Bacillus methanolicus LB-1[J]. Journal of Bioscience and Bioengineering, 2023, 135(2): 118-126.
    [7] XU W, LIU Q, YU SH, ZHANG T, MU WM. Synthesis of lactosucrose using a recombinant levansucrase from Brenneria goodwinii[J]. Applied Biochemistry and Biotechnology, 2018, 186(2): 292-305.
    [8] BAHLAWAN R, KARBOUNE S, LIU L, SAHYOUN AM. Investigation of biocatalytic production of lactosucrose and fructooligosaccharides using levansucrases and dairy by-products as starting materials[J]. Enzyme and Microbial Technology, 2023, 169: 110279.
    [9] MU WM, CHEN QM, WANG X, ZHANG T, JIANG B. Current studies on physiological functions and biological production of lactosucrose[J]. Applied Microbiology and Biotechnology, 2013, 97(16): 7073-7080.
    [10] ITO T, FUJITA K, HARA K, TONOZUKA T, SAKANO Y. Cloning and expression of β-fructofuranosidase gene from Arthrobacter sp. K-1[J]. Journal of Applied Glycoscience, 2002, 49(3): 291-296.
    [11] 朱桂兰, 童群义. β-呋喃果糖苷酶合成低聚乳果糖的工艺研究[J]. 食品工业科技, 2008, 29(12): 188-190. ZHU GL, TONG QY. Study on the synthesis of lactosucrose by β-fructofuranoside from Arthrobacter sp.[J]. Science and Technology of Food Industry, 2008, 29(12): 188-190(in Chinese).
    [12] 廖春龙, 印遇龙, 阮征, 文红艳. β-呋喃果糖苷酶法合成低聚乳果糖工艺优化[J]. 食品科学, 2011, 32(4): 102-106. LIAO CL, YIN YL, RUAN Z, WEN HY. Process optimization for β-fructofuranoside-catalyzed synthesis of lactosucrose[J]. Food Science, 2011, 32(4): 102-106(in Chinese).
    [13] CHEN CM, DENG JY, LV XQ, LI JH, DU GC, LI HZ, LIU L. Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from Arthrobacter sp. 10138[J]. Bioengineered, 2020, 11(1): 416-427.
    [14] LI WJ, YU SH, ZHANG T, JIANG B, STRESSLER T, FISCHER L, MU WM. Efficient biosynthesis of lactosucrose from sucrose and lactose by the purified recombinant levansucrase from Leuconostoc mesenteroides B-512 FMC[J]. Journal of Agricultural and Food Chemistry, 2015, 63(44): 9755-9763.
    [15] WU C, ZHANG T, MU WM, MIAO M, JIANG B. Biosynthesis of lactosylfructoside by an intracellular levansucrase from Bacillus methylotrophicus SK 21.002[J]. Carbohydrate Research, 2015, 401: 122-126.
    [16] PARK NH, CHOI & HJ, OH DK. Lactosucrose production by various microorganisms harboring levansucrase activity[J]. Biotechnology Letters, 2005, 27(7): 495-497.
    [17] TEEPAKORN C, ZAJKOSKA P, CWICKLINSKI G, DEBERARDINIS V, ZAPARUCHA A, NONGLATON G, ANXIONNAZ-MINVIELLE Z. Nitrilase immobilization and transposition from a micro-scale batch to a continuous process increase the nicotinic acid productivity[J]. Biotechnology Journal, 2021, 16(10): e2100010.
    [18] LEE JH, LIM JS, PARK C, KANG SW, SHIN HY, PARK SW, KIM SW. Continuous production of lactosucrose by immobilized Sterigmatomyces elviae mutant[J]. Journal of Microbiology and Biotechnology, 2007, 17(9): 1533-1537.
    [19] LONG J, PAN T, XIE Z, XU X, JIN Z. Effective production of lactosucrose using β-fructofuranosidase and glucose oxidase co-immobilized by sol-gel encapsulation[J]. Food Science & Nutrition, 2019, 7(10): 3302-3316.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

霍润甜,夏伟,刘展志,吴敬. 节杆菌(Arthrobacter sp.) EpRS66 β-呋喃果糖苷酶重组表达及酶促合成低聚乳果糖[J]. 微生物学通报, 2024, 51(9): 3398-3408

复制
分享
文章指标
  • 点击次数:94
  • 下载次数: 195
  • HTML阅读次数: 158
  • 引用次数: 0
历史
  • 收稿日期:2023-12-07
  • 录用日期:2024-01-09
  • 在线发布日期: 2024-09-19
  • 出版日期: 2024-09-20
文章二维码