科微学术

微生物学通报

产细菌素屎肠球菌F11.1G的生物学特性分析
作者:
基金项目:

兵团中青年科技创新领军人才队伍建设项目(2016BC001); 塔里木大学研究生科研创新项目(TDBSCX202309)


Biological characteristics of bacteriocin-producing Enterococcus faecium F11.1G
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】随着滥用抗生素导致耐药问题日益严重,逐渐破坏动物健康与生态环境。为应对这一全球性公共威胁,多国禁止把抗生素作为食品和饲料添加剂,益生菌的替代使用应运而生。【目的】对产细菌素屎肠球菌(Enterococcus faecium) F11.1G的生物学特性作全面分析,以保证该菌株在生产中的合理及安全应用。【方法】通过热稳定性试验、耐酸试验和耐胆盐试验测定其耐热、耐酸和耐胆盐性能;通过药敏试验探究其耐受药物能力;通过表面疏水性试验、自凝聚性试验间接探究其对细胞的黏附能力;通过蛋白酶耐受试验研究其在蛋白酶作用下活性作用的强弱。【结果】屎肠球菌F11.1G发酵上清液具有较强的热稳定性,在110 ℃条件下仍然能够发挥抑菌作用,而最佳生长温度为37 ℃。当pH 5.9时,菌株生长情况较好且存活率最高,随着pH的降低,其生长受到抑制,当pH值降低为1.8时,菌株仍可生长,但存活率仅有9%。胆盐浓度在0.10%时存活率达140.0%,胆盐浓度在0.15%时,存活率达126.6%,而胆盐浓度在0.20%时,存活率为96.6%;菌株对头孢吡肟、丁胺卡那、庆大霉素、诺氟沙星、红霉素、罗红霉素、多黏菌素B、林可霉素、链霉素、新霉素、甲硝唑、克林霉素、制霉菌素、甲氧苄啶、阿奇霉素和卡那霉素耐受;对头孢他啶、左氧氟沙星、环丙沙星中度敏感;对青霉素、头孢唑啉、头孢呋辛、氯霉素、四环素、多西环素、替考拉宁、克拉霉素和呋喃妥因高度敏感。菌株F11.1G对正己烷、二甲苯、乙酸乙酯和二氯甲烷的疏水率分别为84.29%、25.75%、31.26%和15.08%。菌株F11.1G在3、6、9、12、15和18 h的自凝聚率分别为51%、54%、76%、80%、83%和84%。在蛋白酶K作用下,对大肠杆菌(Escherichia coli)和沙门氏菌(Salmonella)的抑菌效果明显减弱,抑菌圈直径分别为13.05 mm和11.28 mm,抑菌率下降幅度分别为52%和58%,而在胰蛋白酶、胃蛋白酶的作用下未产生抑菌圈,抑菌效果几乎完全丧失。结论】屎肠球菌F11.1G具有良好的耐高温、耐酸、耐胆盐能力,对丁胺卡那、庆大霉素、诺氟沙星、红霉素和罗红霉素等16种药物耐受,对正己烷有较高的疏水率且自凝聚性良好,经胰蛋白酶、胃蛋白酶处理后抑菌活性丧失,证明该抑菌物质为蛋白类或肽类,为微生态制剂的安全应用提供基础数据。

    Abstract:

    [Background] The abuse of antibiotics leads to increasingly severe drug resistance, which poses a growing threat to animal health and the environment. In response to this global public health threat, many countries have banned the use of antibiotics as food and feed additives. In this context, probiotics emerge as alternatives. [Objective] To comprehensively characterize bacteriocin-producing Enterococcus faecium F11.1G. [Methods] Tests were carried out to examine the thermal stability, acid tolerance, bile salt tolerance, antibiotic sensitivity, surface hydrophobicity, self-aggregation, and protease resistance of this strain. [Results] The fermentation supernatant of E.faecium F11.1G had strong thermal stability and maintained antibacterial activity at 110 ℃, with an optimal growth temperature of 37 ℃. The strain grew well and had the highest survival rate at pH 5.9. As the pH decreased, the growth was inhibited. However, at pH 1.8, the strain can still grow with a survival rate of 9%. The strain showed the survival rates of 140.0%, 126.6%, and 96.6% at the bile salt concentrations of 0.10%, 0.15%, and 0.20%, respectively. The strain was tolerant to 16 antibiotics: cefepime, amikacin, gentamicin, norfloxacin, erythromycin, roxithromycin, polymyxin B, lincomycin, streptomycin, neomycin, metronidazole, clindamycin, nystatin, trimethoprim, azithromycin, and kanamycin. It was moderately sensitive to ceftazidime, levofloxacin, and ciprofloxacin and highly sensitive to penicillin, cefazolin, cefuroxime, chloramphenicol, tetracycline, doxycycline, teicoplanin, clarithromycin and nitrofurantoin. The hydrophobicity of E.faecalis F11.1G to hexane, xylene, ethyl acetate, and dichloromethane was 84.29%, 25.75%, 31.26%, and 15.08%, respectively. The self-aggregation rates of E.faecalis F11.1G at the time points of 3, 6, 9, 12, 15, and 18 h were 51%, 54%, 76%, 80%, 83%, and 84%, respectively. In the presence of protease K, the inhibitory effects of the strain against Escherichia coli and Salmonella were significantly weakened, with the inhibition zone diameters of 13.05 mm and 11.28 mm and the inhibition rate decreases of 52% and 58%, respectively. In the presence of trypsin and pepsin, no inhibition zone was formed, which indicated that the strain almost completely lost the antibacterial effects. [Conclusion] E.faecium F11.1G demonstrates strong tolerance to high temperatures, acids, and bile salt, resistance to 16 antibiotics, high hydrophobicity to hexane, and high self-aggregation. However, it loses its antibacterial activity after treatment with trypsin and pepsin, which indicates that the antibacterial substance is a protein or peptide. The results provide basic data for the safe application of probiotics.

    参考文献
    [1] BISHT R, SAXENA P. Antibiotic abuse: post-antibiotic apocalypse, superbugs and superfoods[J]. Current Science, 2019, 116(7): 1055-1056.
    [2] CASTANON JIR. History of the use of antibiotic as growth promoters in European poultry feeds[J]. Poultry Science, 2007, 86(11): 2466-2471.
    [3] HILL C, GUARNER F, REID G, GIBSON GR, MERENSTEIN DJ, POT B, MORELLI L, CANANI RB, FLINT HJ, SALMINEN S, CALDER PC, SANDERS ME. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic[J]. Nature Reviews Gastroenterology & Hepatology, 2014, 11: 506-514.
    [4] DANIEL M, LILLY, STILLWELL RH. Probiotics: growth-promoting factors produced by microorganisms[J]. Science, 1965, 147(3659): 747-748.
    [5] FULLER AFRC. Probiotics in man and animals[J]. Journal of Applied Bacteriology, 1989, 66(5): 365-378.
    [6] DELUNGAHAWATTA T, AMIN JY, STANISZ AM, BIENENSTOCK J, FORSYTHE P, KUNZE WA. Antibiotic driven changes in gut motility suggest direct modulation of enteric nervous system[J]. Frontiers in Neuroscience, 2017, 11: 588.
    [7] JOHNSON EL, HEAVER SL, WALTERS WA, LEY RE. Microbiome and metabolic disease: revisiting the bacterial phylum bacteroidetes[J]. Journal of Molecular Medicine, 2017, 95(1): 1-8.
    [8] DAHIYA DK, RENUKA, PUNIYA M, SHANDILYA UK, DHEWA T, KUMAR N, KUMAR S, PUNIYA AK, SHUKLA P. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review[J]. Frontiers in Microbiology, 2017, 8: 563.
    [9] SWANSON KS, GIBSON GR, HUTKINS R, REIMER RA, REID G, VERBEKE K, SCOTT KP, HOLSCHER HD, AZAD MB, DELZENNE NM, SANDERS ME. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics[J]. Nature Reviews Gastroenterology & Hepatology, 2020, 17: 687-701.
    [10] KAYAMA H, OKUMURA R, TAKEDA K. Interaction between the microbiota, epithelia, and immune cells in the intestine[J]. Annual Review of Immunology, 2020, 38: 23-48.
    [11] AMOAH K, HUANG QC, TAN BP, ZHANG S, CHI SY, YANG QH, LIU HY, DONG XH. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2019, 87: 796-808.
    [12] WESTFALL S, LOMIS N, KAHOULI I, DIA SY, SINGH SP, PRAKASH S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis[J]. Cellular and Molecular Life Sciences, 2017, 74(20): 3769-3787.
    [13] WU T, ZHANG Y, LV Y, LI P, YI D, WANG L, ZHAO D, CHEN HB, GONG J, HOU YQ. Beneficial impact and molecular mechanism of Bacillus coagulans on piglets’ intestine[J]. International Journal of Molecular Sciences, 2018, 19(7): 2084.
    [14] MAZIDI M, REZAIE P, KENGNE AP, MOBARHAN MG, FERNS GA. Gut microbiome and metabolic syndrome[J]. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2016, 10(2): S150-S157.
    [15] JENSEN H, GRIMMER S, NATERSTAD K, AXELSSON L. In vitro testing of commercial and potential probiotic lactic acid bacteria[J]. International Journal of Food Microbiology, 2012, 153(1/2): 216-222.
    [16] WIDYASTUTI Y, ROHMATUSSOLIHAT, FEBRISIANTOSA A. The role of lactic acid bacteria in milk fermentation[J]. Food and Nutrition Sciences, 2014, 5(4): 435-442.
    [17] EMMANUEL DGV, JAFARI A, BEAUCHEMIN KA, LEEDLE JAZ, AMETAJ BN. Feeding a combination of lactate-utilizing and lactate producing bacteria modulates acute phase response in feedlot steers[J]. Canadian Journal of Animal Science, 2007, 87(2): 251-257.
    [18] LUO JJ, ZHENG AJ, MENG K, CHANG WH, BAI YG, LI K, CAI HY, LIU GH, YAO B. Proteome changes in the intestinal mucosa of broiler (Gallus gallus) activated by probiotic Enterococcus faecium[J]. Journal of Proteomics, 2013, 91: 226-241.
    [19] KRÄMER J, BRANDIS H. Mode of action of two streptococcus faecium bacteriocins[J]. Antimicrobial Agents and Chemotherapy, 1975, 7(2): 117-120.
    [20] CASAUS P, NILSEN T, CINTAS LM, NES IF, HERNÁNDEZ PE, HOLO H. Enterocin B, a new bacteriocin from Enterococcus faecium T136 which can act synergistically with enterocin A[J]. Microbiology, 1997, 143(Pt7): 2287-2294.
    [21] LAUKOVÁ A, SZABÓOVÁ R, PLEVA P, BUŇKOVÁ L, CHRASTINOVÁ Ľ. Decarboxylase-positive Enterococcus faecium strains isolated from rabbit meat and their sensitivity to enterocins[J]. Food Science & Nutrition, 2016, 5(1): 31-37.
    [22] HUANG Y, YE KP, YU KQ, WANG K, ZHOU GH. The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes[J]. Food Control, 2016, 67: 18-24.
    [23] CHAKCHOUK-MTIBAA A, SMAOUI S, KTARI N, SELLEM I, NAJAH S, KARRAY-REBAI I, MELLOULI L. Biopreservative efficacy of bacteriocin bacfl31 in raw ground turkey meat in terms of microbiological, physicochemical, and sensory qualities[J]. Biocontrol Science, 2017, 22(2): 67-77.
    [24] VANDERA E, LIANOU A, KAKOURI A, FENG JB, KOUKKOU AI, SAMELIS J. Enhanced control of Listeria monocytogenes by Enterococcus faecium KE82, a multiple enterocin-producing strain, in different milk environments[J]. Journal of Food Protection, 2017, 80(1): 74-85.
    [25] 尹雪, 郭雪峰, 帕提古丽·毛拉红, 刘俊峰, 张秀萍, 席琳乔, 程龙. 传统发面面肥中乳酸菌的分离与鉴定[J]. 食品工业科技, 2017, 38(14): 141-145. YIN X, GUO XF, Patiguli Maolahong, LIU JF, ZHANG XP, XI LQ, CHENG L. Isolation and identification of lactic acid bacteria from Chinese traditional sourdough[J]. Science and Technology of Food Industry, 2017, 38(14): 141-145 (in Chinese).
    [26] KVANÇ SA, KVANÇ M, YIĞIT T. Antibiotic susceptibility, antibacterial activity and characterization of Enterococcus faecium strains isolated from breast milk[J]. Experimental and Therapeutic Medicine, 2016, 12(3): 1732-1740.
    [27] LIU ZJ, XU C, TIAN R, WANG W, MA JG, GU LY, LIU F, JIANG ZM, HOU JC. Screening beneficial bacteriostatic lactic acid bacteria in the intestine and studies of bacteriostatic substances[J]. Journal of Zhejiang University Science B, 2021, 22(7): 533-547.
    [28] ALAMERI F, TARIQUE M, OSAILI T, OBAID R, ABDALLA A, MASAD R, AL-SBIEI A, FERNANDEZ-CABEZUDO M, LIU SQ, AL-RAMADI B, AYYASH M. Lactic acid bacteria isolated from fresh vegetable products: potential probiotic and postbiotic characteristics including immunomodulatory effects[J]. Microorganisms, 2022, 10(2): 389.
    [29] BSAC Working Party on Susceptibility Testing. BSAC standardized disc susceptibility testing method[J]. Journal of Antimicrobial Chemotherapy, 2001, 48(suppl_1): 43-57.
    [30] MALLAPPA RH, SINGH DK, ROKANA N, PRADHAN D, BATISH VK, GROVER S. Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis[J]. LWT-Food Science and Technology, 2019, 105: 272-281.
    [31] POLAK-BERECKA M, WAŚKO A, PADUCH R, SKRZYPEK T, SROKA-BARTNICKA A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus[J]. Antonie van Leeuwenhoek, 2014, 106(4): 751-762.
    [32] HERNÁNDEZ-ALCÁNTARA AM, WACHER C, LLAMAS MG, LÓPEZ P, PÉREZ-CHABELA ML. Probiotic properties and stress response of thermotolerant lactic acid bacteria isolated from cooked meat products[J]. LWT-Food Science and Technology, 2018, 91: 249-257.
    [33] BRÜCKNER S, MÖSCH HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae[J]. FEMS Microbiology Reviews, 2012, 36(1): 25-58.
    [34] SLATTERY C, COTTER PD, O’TOOLE PW. Analysis of health benefits conferred by Lactobacillus species from kefir[J]. Nutrients, 2019, 11(6): 1252.
    [35] GROSU-TUDOR SS, ZAMFIR M. Probiotic potential of some lactic acid bacteria isolated from Romanian fermented vegetables[J]. Annals of the Romanian Society for Cell Biology, 2012, 17(1): 234-239.
    [36] FUOCHI V, PETRONIO GP, LISSANDRELLO E, FURNERI PM. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates[J]. International Journal of Immunopathology and Pharmacology, 2015, 28(3): 426-433.
    [37] DAS P, KHOWALA S, BISWAS S. In vitro probiotic characterization of Lactobacillus casei isolated from marine samples[J]. LWT-Food Science and Technology, 2016, 73: 383-390.
    [38] YANG E, FAN L, YAN J, JIANG Y, DOUCETTE C, FILLMORE S, WALKER B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria[J]. AMB Express, 2018, 8: 10.
    [39] HYRONIMUS B, Le MARREC C, HADJ SASSI A, DESCHAMPS A. Acid and bile tolerance of spore-forming lactic acid bacteria[J]. International Journal of Food Microbiology, 2000, 61(2/3): 193-197.
    [40] JENA PK, TRIVEDI D, THAKORE K, CHAUDHARY H, GIRI SS, SESHADRI S. Isolation and characterization of probiotic properties of Lactobacilli isolated from rat fecal microbiota[J]. Microbiology and Immunology, 2013, 57(6): 407-416.
    [41] SHARMA A, LAVANIA M, SINGH R, LAL B. Identification and probiotic potential of lactic acid bacteria from camel milk[J]. Saudi Journal of Biological Sciences, 2021, 28(3): 1622-1632.
    [42] ZOUMPOPOULOU G, FOLIGNE B, CHRISTODOULOU K, GRANGETTE C, POT B, TSAKALIDOU E. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models[J]. International Journal of Food Microbiology, 2008, 121(1): 18-26.
    [43] LEE H, YOON H, JI Y, KIM H, PARK H, LEE J, SHIN H, HOLZAPFEL W. Functional properties of Lactobacillus strains isolated from kimchi[J]. International Journal of Food Microbiology, 2011, 145(1): 155-161.
    [44] MÄTTÖ J, van HOEK AHAM, DOMIG KJ, SAARELA M, FLORÉZ AB, BROCKMANN E, AMTMANN E, MAYO B, AARTS HJM, DANIELSEN M. Susceptibility of human and probiotic Bifidobacterium spp. to selected antibiotics as determined by the Etest method[J]. International Dairy Journal, 2007, 17(9): 1123-1131.
    [45] ZAVARYANI SM, MIRNEJAD R, PIRANFAR V, MOGHADDAM MM, SAJJADI N, SAEEDI S. Assessment of susceptibility to five common antibiotics and their resistance pattern in clinical Enterococcus isolates[J]. Iranian Journal of Pathology, 2020, 15(2): 96-105.
    [46] SCHILLINGER U, GUIGAS C, HEINRICH HOLZAPFEL W. In vitro adherence and other properties of lactobacilli used in probiotic yoghurt-like products[J]. International Dairy Journal, 2005, 15(12): 1289-1297.
    [47] EHRMANN MA, KURZAK P, BAUER J, VOGEL RF. Characterization of lactobacilli towards their use as probiotic adjuncts in poultry[J]. Journal of Applied Microbiology, 2002, 92(5): 966-975.
    [48] LASIK-KURDYŚ M, SIP A. Evaluation of the antimicrobial activity of bacteriocin-like inhibitory substances of enological importance produced by Oenococcus oeni isolated from wine[J]. European Food Research and Technology, 2019, 245(2): 375-382.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

万颖,王明根,朱振宇,白天天,杨成,郭雪峰. 产细菌素屎肠球菌F11.1G的生物学特性分析[J]. 微生物学通报, 2024, 51(8): 3119-3132

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-04
  • 最后修改日期:2023-12-20
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码