科微学术

微生物学通报

羊源粪肠球菌多位点序列分型及其耐药特性和毒力基因检测分析
作者:
基金项目:

安徽省教育厅自然科学研究重大项目(2023AH040282); 安徽省现代农业产业技术体系建设专项资金([2022]10);乡村振兴专项项目(2021XCZX05)


Multilocus sequence typing, antibiotic resistance, and virulence genes of Enterococcus faecalis from sheep
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【背景】粪肠球菌(Enterococcus faecalis)作为一种普遍存在的条件致病菌,能引起严重感染,并能作为高耐药/毒力因子的储存和传播者对公共安全造成严重威胁。【目的】掌握安徽地区羊源粪肠球菌ST型分布特征及耐药、毒力特性,并分析其耐药基因、毒力基因与ST型之间的相关性,评估其潜在致病性及对公共卫生的危害性。【方法】以2021−2023年采集自安徽地区的64份羊直肠棉拭子为样本对粪肠球菌进行分离鉴定,采用多位点序列分型(multilocus sequence typing, MLST)方法对菌株进行分型鉴定,Kirby-Bauer (K-B)纸片扩散法测定粪肠球菌对16种抗菌药物的敏感性,并检测9种耐药基因及14种毒力基因的分布。【结果】共分离得到61株粪肠球菌,鉴定为24种ST型,其中9种为新发现ST型;奈替米星(72.13%)、丁胺卡那(75.41%)、四环素(55.74%)和红霉素(63.93%)的耐药比例最高,少数对万古霉素(9.84%)、利奈唑胺(11.48%)耐药,多重耐药(multi-drug resistance, MDR)率为57.38%;耐药基因ermB (77.05%)、aac(6')/aph(2') (52.46%)、tem (55.74%)的携带率最高,vanC (8.20%)、mefA (1.64%)的携带率最低;毒力基因cpd (100%)、efaA (98.36%)、ebp (95.08%)和fsr (81.97%)的携带率最高,hyl (11.48%)的携带率最低;部分耐药基因、毒力基因的分布在不同ST型之间具有显著差异(P<0.05)。【结论】羊源粪便粪肠球菌中携带高耐药和高水平毒力基因,且耐药特性及毒力的分布与ST型有着较高的相关性。

    Abstract:

    [Background] As a common opportunistic pathogen, Enterococcus faecalis can cause severe infections and pose a serious threat to public safety as a carrier of high resistance/virulence factors. [Objective] To master the sequence type (ST) distribution, antibiotic resistance, and virulence of sheep-derived E.faecalis strains in Anhui Province, analyze the correlations of antibiotic resistance and virulence genes with ST, and evaluate the potential threat to the public health. [Methods] E.faecalis was isolated from 64 sheep anal swab samples collected from Anhui during 2021−2023. Multilocus sequence typing (MLST) was employed to classify and identify the isolates. Kirby Bauer (K-B) test was carried out to determine the sensitivity of E.faecalis isolates to 16 antibiotics. Furthermore, the distribution of 9 resistance genes and 14 virulence genes was tested. [Results] A total of 61 strains of E.faecalis were isolated and identified as 24 STs, of which 9 were newly discovered STs. Most of the strains showed resistance to netilmicin (72.13%), amikacin (75.41%), tetracycline (55.74%), and erythromycin (63.93%). A few strains were resistant to vancomycin (9.84%) and linezolid (11.48%). with And the multi-drug resistance (MDR) rate was 57.38%. The carrier rates of resistance genes ermB (77.05%), aac(6')/aph(2') (52.46%), and tem (55.74%) were high, while those of vanC and mefA were low at 8.20% and 1.64%, respectively. The carrying rates of virulence genes cpd (100%), efaA (98.36%), ebp (95.08%), and fsr (81.97%) were high, while it was the lowest for hyl (11.48%). The distribution of some resistance and virulence genes showed differences among different STs (P<0.05). [Conclusion] Enterococcus faecalis from sheep feces carry high resistance and high virulence genes, and the distribution of resistance and virulence is highly correlated with STs.

    参考文献
    [1] NOWAKIEWICZ A, ZIÓŁKOWSKA G, TROŚCIAŃCZYK A, ZIĘBA P, GNAT S. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting[J]. Poultry Science, 2017, 96(4): 986-996.
    [2] OZMA MA, KHODADADI E, REZAEE MA, KAMOUNAH FS, ASGHARZADEH M, GANBAROV K, AGHAZADEH M, YOUSEFI M, PIRZADEH T, KAFIL HS. Induction of proteome changes involved in biofilm formation of Enterococcus faecalis in response to gentamicin[J]. Microbial Pathogenesis, 2021, 157: 105003.
    [3] GARCÍA-SOLACHE M, RICE LB. The Enterococcus: a model of adaptability to its environment[J]. Clinical Microbiology Reviews, 2019, 32(2): e00058-18.
    [4] GAWRYSZEWSKA I, ŻABICKA D, BOJARSKA K, MALINOWSKA K, HRYNIEWICZ W, SADOWY E. Invasive enterococcal infections in Poland: the current epidemiological situation[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2016, 35(5): 847-856.
    [5] EL-ZAMKAN MA, MOHAMED HMA. Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis[J]. PLoS One, 2021, 16(11): e0259584.
    [6] HAMED SM, ELKHATIB WF, EL-MAHALLAWY HA, HELMY MM, ASHOUR MS, ABOSHANAB KMA. Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients[J]. Scientific Reports, 2018, 8: 12268.
    [7] QUIÑONES D, KOBAYASHI N, NAGASHIMA S. Molecular epidemiologic analysis of Enterococcus faecalis isolates in Cuba by multilocus sequence typing[J]. Microbial Drug Resistance, 2009, 15(4): 287-293.
    [8] de BRIYNE N, ATKINSON J, POKLUDOVÁ L, BORRIELLO SP. Antibiotics used most commonly to treat animals in Europe[J]. The Veterinary Record, 2014, 175(13): 325.
    [9] MAGIORAKOS AP, SRINIVASAN A, CAREY RB, CARMELI Y, FALAGAS ME, GISKE CG, HARBARTH S, HINDLER JF, KAHLMETER G, OLSSON−LILJEQUIST B, PATERSON DL, RICE LB, STELLING J, STRUELENS MJ, VATOPOULOS A, WEBER JT, MONNET DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance[J]. Clinical Microbiology and Infection, 2012, 18(3): 268-281.
    [10] RUIZ-GARBAJOSA P, BONTEN MJM, ROBINSON DA, TOP J, NALLAPAREDDY SR, TORRES C, COQUE TM, CANTÓN R, BAQUERO F, MURRAY BE, del CAMPO R, WILLEMS RJL. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination[J]. Journal of Clinical Microbiology, 2006, 44(6): 2220-2228.
    [11] TROŚCIAŃCZYK A, NOWAKIEWICZ A, GNAT S, ŁAGOWSKI D, OSIŃSKA M. Are dogs and cats a reservoir of resistant and virulent Enterococcus faecalis strains and a potential threat to public health?[J]. Journal of Applied Microbiology, 2021, 131(4): 2061-2071.
    [12] Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing[S]. CLSI supplement M100-S30, 30th ed. Wayne, Pennsylvania, USA, 2020.
    [13] Woźniak-Biel A, Bugla-PłoskoŃska G, Burdzy J, Korzekwa K, Ploch S, Wieliczko A. Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland[J]. Microbial Drug Resistance, 2019, 25(2): 277-286.
    [14] KARIYAMA R, MITSUHATA R, CHOW JW, CLEWELL DB, KUMON H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci[J]. Journal of Clinical Microbiology, 2000, 38(8): 3092-3095.
    [15] VANKERCKHOVEN V, van AUTGAERDEN T, VAEL C, LAMMENS C, CHAPELLE S, ROSSI R, JABES D, GOOSSENS H. Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium[J]. Journal of Clinical Microbiology, 2004, 42(10): 4473-4479.
    [16] 李慧, 王蒙蒙, 李傲寒, 高静雯, 高健鹏, 张华雷, 张莉, 齐亚银. 致动物脑膜炎粪肠球菌人工感染小鼠脑部模型的建立[J]. 动物医学进展, 2019, 40(8): 34-39. LI H, WANG MM, LI AH, GAO JW, GAO JP, ZHANG HL, ZHANG L, QI YY. Establishment of brain model of artificially infected mice with Enterococcus faecalis causing animal encephalitis[J]. Progress in Veterinary Medicine, 2019, 40(8): 34-39 (in Chinese).
    [17] BEN SAID L, KLIBI N, LOZANO C, DZIRI R, BEN SLAMA K, BOUDABOUS A, TORRES C. Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia[J]. Science of the Total Environment, 2015, 530/531: 11-17.
    [18] del MAR LLEÒ M, BONATO B, BENEDETTI D, CANEPARI P. Survival of enterococcal species in aquatic environments[J]. FEMS Microbiology Ecology, 2005, 54(2): 189-196.
    [19] DOMÁN M, MAKRAI L, BÁNYAI K. Molecular phylogenetic analysis of Candida krusei[J]. Mycopathologia, 2022, 187(4): 333-343.
    [20] 史秀杰, 郑晓聪, 阮周曦, 贾鹏, 何俊强, 王津津, 兰文升, 杨锦舜, 刘荭. 水生动物中分离的副溶血性弧菌菌株分子分型研究[J]. 中国动物检疫, 2012, 29(6): 47-53, 63. SHI XJ, ZHENG XC, RUAN ZX, JIA P, HE JQ, WANG JJ, LAN WS, YANG JS, LIU H. Molecular subtyping studies of Vibrio parahaemolyticus isolated from aquatic animals[J]. China Animal Health Inspection, 2012, 29(6): 47-53, 63 (in Chinese).
    [21] 徐琦琦, 陈月月, 李宏博, 陈万昭, 秦蕾, 王东, 夏利宁. 新疆伊犁昭苏不同动物源粪肠球菌耐药性及耐药基因检测[J]. 中国农业科技导报, 2023, 25(9): 140-146. XU QQ, CHEN YY, LI HB, CHEN WZ, QIN L, WANG D, XIA LN. Detection of drug resistance and drug resistance genes of Enterococcus faecalis from different animal sources in Zhaosu, Yili, Xinjiang[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 140-146 (in Chinese).
    [22] 白耀霞, 任建元. 肠球菌氨基糖苷类高水平耐药基因与毒力基因研究进展[J]. 甘肃医药, 2019, 38(3): 212-213, 217. BAI YX, REN JY. Advances on resistence gene and virulence gene of high-level aminoglycosides in Enterococci[J]. Gansu Medical Journal, 2019, 38(3): 212-213, 217 (in Chinese).
    [23] KRAUSE KM, SERIO AW, KANE TR, CONNOLLY LE. Aminoglycosides: an overview[J]. Cold Spring Harbor Perspectives in Medicine, 2016, 6(6): a027029.
    [24] 贾伟, 赵梅, 王文, 魏军. 肠球菌属耐药性与耐药基因的比较研究[J]. 中华医院感染学杂志, 2015, 25(24): 5551-5554. JIA W, ZHAO M, WANG W, WEI J. Comparative study on drug resistances and drug-resistant genes of Enterococcus species in clinic[J]. Chinese Journal of Nosocomiology, 2015, 25(24): 5551-5554 (in Chinese).
    [25] MILLER WR, MURRAY BE, RICE LB, ARIAS CA. Resistance in vancomycin-resistant enterococci[J]. Infectious Disease Clinics of North America, 2020, 34(4): 751-771.
    [26] NAVARRO F, COURVALIN P. Analysis of genes encoding d-alanine-d-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens[J]. Antimicrobial Agents and Chemotherapy, 1994, 38(8): 1788-1793.
    [27] EATON TJ, GASSON MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates[J]. Applied and Environmental Microbiology, 2001, 67(4): 1628-1635.
    [28] 张留君. 动物源性粪肠球菌ebp菌毛基因的保守性及其多克隆抗体的制备[D]. 郑州: 河南农业大学硕士学位论文, 2015. ZHANG LJ. ebp pilus gene conservation analysis and polyclonal antibody preparation of animal-originated E. feacalis isolates[D]. Zhengzhou: Master’s Thesis of Henan Agricultural University, 2015 (in Chinese).
    [29] GOLIŃSKA E, TOMUSIAK A, GOSIEWSKI T, WIĘCEK G, MACHUL A, MIKOŁAJCZYK D, BULANDA M, HECZKO PB, STRUS M. Virulence factors of Enterococcus strains isolated from patients with inflammatory bowel disease[J]. World Journal of Gastroenterology, 2013, 19(23): 3562-3572.
    [30] QIN X, SINGH KV, WEINSTOCK GM, MURRAY BE. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence[J]. Infection and Immunity, 2000, 68(5): 2579-2586.
    [31] NALLAPAREDDY SR, SINGH KV, SILLANPÄÄ J, GARSIN DA, HÖÖK M, ERLANDSEN SL, MURRAY BE. Endocarditis and biofilm-associated pili of Enterococcus faecalis[J]. The Journal of Clinical Investigation, 2006, 116(10): 2799-2807.
    [32] LEBRETON F, RIBOULET-BISSON E, SERROR P, SANGUINETTI M, POSTERARO B, TORELLI R, HARTKE A, AUFFRAY Y, GIARD JC. ace, which encodes an adhesin in Enterococcus faecalis, is regulated by Ers and is involved in virulence[J]. Infection and Immunity, 2009, 77(7): 2832-2839.
    [33] NIU HY, YU H, HU TP, TIAN GL, ZHANG LX, GUO X, HU H, WANG ZL. The prevalence of aminoglycoside-modifying enzyme and virulence genes among enterococci with high-level aminoglycoside resistance in Inner Mongolia, China[J]. Brazilian Journal of Microbiology, 2016, 47(3): 691-696.
    [34] CUI PF, FENG L, ZHANG L, HE J, AN TW, FU X, LI C, ZHAO XD, ZHAI YR, LI H, YAN WJ, LI HD, LUO XL, LEI CW, WANG HN, YANG X. Antimicrobial resistance, virulence genes, and biofilm formation capacity among Enterococcus species from yaks in Aba Tibetan Autonomous Prefecture, China[J]. Frontiers in Microbiology, 2020, 11: 1250.
    引证文献
引用本文

邓亚飞,吴佳颖,张留君,闫康,辛洪雷,贺绍君. 羊源粪肠球菌多位点序列分型及其耐药特性和毒力基因检测分析[J]. 微生物学通报, 2024, 51(8): 3070-3084

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-11
  • 最后修改日期:2023-12-11
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码