科微学术

微生物学通报

短小橘杆菌(Brevibacterium antarcticum) WN5代谢产物对烟苗的促生效应
作者:
基金项目:

贵州省烟草公司遵义市公司科技项目(2022XM05)


Metabolites of Brevibacterium antarcticum strain WN5 promote the growth of tobacco seedlings
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】短小橘杆菌(Brevibacterium antarcticum)菌株WN5筛选自贵州植烟土壤,具有氨转化能力,但其对烟草促生应用效果研究的报道较少。【目的】研究菌株WN5代谢产物对烟苗的促生作用。【方法】在烟苗十字期施用菌株WN5培养液,通过对烟苗外观农艺性状、根系形态结构及活性、氮素养分和抗逆性生理指标等数据的分析,探讨其促生效应。【结果】在菌株培养液中测定出了4种激素及激素合成前体:1-氨基环丙烷-1-羧酸、反式玉米素、吲哚-3-乙酸和水杨酸,将其施用在烟苗生长基质中,可促进地上部分生长,烟苗株高、茎围和鲜重分别增加42.74%、12.91%和5.00%,最大叶面积和叶片数也有增加趋势,但未达显著差异水平;烟苗叶绿素含量较对照增加32.86%;菌液处理根系的总面积、表面积、平均直径、平均长度、体积和根系活力分别显著增加35.42%、20.54%、18.22%、24.07%、36.56%和29.01%;对根系的促进作用大于地上部,根冠比显著提高41.67%。菌株WN5处理还提升了烟苗吸收养分的能力和抗逆能力,硝酸还原酶(nitrate reductase, NR)活性提升32.97%,过氧化氢酶(catalase, CAT)活性、超氧化物歧化酶(superoxide dismutase, SOD)活性和可溶性蛋白(soluble protein, SP)增加了36.31%、16.23%和18.50%。【结论】菌株WN5通过产生植物激素显著促进烟苗地上部与根系的生长,提高根系活力,增强对氮素的吸收能力和烟苗的抗氧化应激能力,具有广泛的应用潜力。

    Abstract:

    [Background] The Brevibacterium antarcticum strain WN5, isolated from tobacco- cultivating soil in Guizhou, possesses ammonia transformation capabilities. However, there are few reports on its efficacy in promoting tobacco growth. [Objective] To investigate the growth-promoting effect of WN5 metabolites on tobacco seedlings. [Methods] We applied the WN5 culture to the tobacco seedlings with two leaves and then determined the agronomic traits, morphological traits and vigor of roots, nitrogen nutrients, and stress resistance of the tobacco seedlings. [Results] Four plant hormones and hormone precursors: 1-aminocyclopropane-1-carboxylic acid, trans zeatin, indole-3-acetic acid, and salicylic acid, were detected in the strain culture. The strain culture was then applied to the matrix of tobacco seedlings, which promoted the shoot growth, increasing the plant height, stem circumference, and fresh weight of the seedlings by 42.74%, 12.91%, and 5.00%, respectively. However, the maximum leaf area and leaf number increased without statistically significance, The chlorophyll content in tobacco seedlings increased by 32.86% compared to the control. Additionally, the strain culture enhanced root growth and vigor, increasing the total area, surface area, average diameter, average length, volume, and vigor of roots by 35.42%, 20.54%, 18.22%, 24.07%, 36.56%, and 29.01%, respectively. The growth-promoting effect of the strain culture was more significant on the roots than on the shoots, as the root-to-shoot ratio was increased by 41.67%. Moreover, the treatment with WN5 enhanced the nutrient absorption and stress resistance of tobacco seedlings. Specifically, the treatment increased the levels of nitrate reductase, catalase, superoxide dismutase, and soluble protein by 32.97%, 36.31%, 16.23%, and 18.50%, respectively. [Conclusion] B.antarcticum WN5 can promote the shoot and root growth, improve the root vigor, enhance the nitrogen absorption, and reduce the oxidative stress of tobacco seedlings by producing plant hormones. This finding suggests that WN5 has great potential for widespread application.

    参考文献
    [1] 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9): 42-48. FU YS, LI YC, XU ZH, SHAO JH, LIU YP, XUAN W, ZHANG RF. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnology Bulletin, 2020, 36(9): 42-48 (in Chinese).
    [2] REMANS R, BEEBE S, BLAIR M, MANRIQUE G, TOVAR E, RAO I, CROONENBORGHS A, TORRES-GUTIERREZ R, EL-HOWEITY M, MICHIELS J, VANDERLEYDEN J. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.)[J]. Plant and Soil, 2008, 302(1): 149-161.
    [3] LIM JH, KIM SD. Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniformis K11[J]. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52(5): 531-538.
    [4] FELTEN J, LEGUÉ V, DITENGOU FA. Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor: is fungal auxin the trigger?[J]. Plant Signaling & Behavior, 2010, 5(7): 864-867.
    [5] GARCÍA de SALAMONE IE, HYNES RK, NELSON LM. Cytokinin production by plant growth promoting rhizobacteria and selected mutants[J]. Canadian Journal of Microbiology, 2001, 47(5): 404-411.
    [6] TIMMUSK S, NICANDER B, GRANHALL U, TILLBERG E. Cytokinin production by Paenibacillus polymyxa[J]. Soil Biology and Biochemistry, 1999, 31(13): 1847-1852.
    [7] ARKHIPOVA TN, VESELOV SU, MELENTIEV AI, MARTYNENKO EV, KUDOYAROVA GR. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants[J]. Plant and Soil, 2005, 272(1): 201-209.
    [8] JOO GJ, KIM YM, LEE IJ, SONG KS, RHEE IK. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macroides and Bacillus pumilus[J]. Biotechnology Letters, 2004, 26(6): 487-491.
    [9] RYU CM, FARAG MA, HU CH, REDDY MS, WEI HX, PARÉ PW, KLOEPPER JW. Bacterial volatiles promote growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4927-4932.
    [10] SPLIVALLO R, FISCHER U, GÖBEL C, FEUSSNER I, KARLOVSKY P. Truffles regulate plant root morphogenesis via the production of auxin and ethylene[J]. Plant Physiology, 2009, 150(4): 2018-2029.
    [11] CONTRERAS-CORNEJO HA, LÓPEZ-BUCIO JS, MÉNDEZ-BRAVO A, MACÍAS-RODRÍGUEZ L, RAMOS-VEGA M, GUEVARA-GARCÍA ÁA, LÓPEZ-BUCIO J. Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride[J]. Molecular Plant-Microbe Interactions: MPMI, 2015, 28(6): 701-710.
    [12] NIARI KHAMSSI N, NAJAPHY A. Physiological and biochemical responses of durum wheat under mild terminal drought stress[J]. Cellular and Molecular Biology, 2018, 64(4): 59-63.
    [13] 王小花, 黄莺, 陈雪, 夏梓林, 代飞, 刘昌, 张恒. 植烟土壤高活性氨化菌的筛选鉴定及其氨化能力分析[J]. 中国烟草科学, 2019, 40(3): 31-38. WANG XH, HUANG Y, CHEN X, XIA ZL, DAI F, LIU C, ZHANG H. Screening and identification of highly active ammoniating bacteria in tobacco planting soil and analysis of their ammoniation ability[J]. China Tobacco Science, 2019, 40(3): 31-38 (in Chinese).
    [14] 逄涛, 宋春满, 方敦煌, 邓建华, 邓云龙. 云南烤烟主要栽培品种化学成分比较分析[J]. 西南农业学报, 2009, 22(6): 1562-1566. XIAO T, SONG CM, Fang DH, DENG JH, DENG YL. Comparative analysis of chemical composition of main cultivars of flue-cured tobacco in Yunnan[J]. Southwest Journal of Agricultural Sciences, 2009, 22(6): 1562-1566 (in Chinese).
    [15] 陈泽斌, 代方平, 寸林江, 李啟, 陈艳芳, 许石剑, 方飞, 黄杨. 烟草内生细菌分离方法的优化研究[J]. 中国烟草学报, 2014, 20(1): 90-95, 102. CHEN ZB, DAI FP, CUN LJ, LI Q, CHEN YF, XU SJ, FANG F, HUANG Y. Optimization of isolation method of tobacco endophytic bacteria[J]. Chinese Journal of Tobacco Science, 2014, 20(1): 90-95, 102 (in Chinese).
    [16] 全国烟草标准化技术委员会. 烟草农艺性状调查测量方法: YC/T 142—2010[S]. 北京: 中国标准出版社, 2010. National Tobacco Standardization Technical Committee. Tobacco agronomic trait survey measurement methods: YC/T142—2010[S]. Beijing: Standards Press of China, 2010 (in Chinese).
    [17] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 2版. 广州: 华南理工大学出版社, 2006. CHEN JX, WANG XF. Experimental instruction of plant physiology[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006 (in Chinese).
    [18] 张志良, 瞿伟菁. 植物生理学实验指导[M]. 3版. 北京: 高等教育出版社, 2003. ZHANG ZL, QU WJ. The experimental guide for plant physiology[M]. 3rd ed. Beijing: Higher Education Press, 2003 (in Chinese).
    [19] 郝再彬. 植物生理实验技术[M]. 哈尔滨: 哈尔滨出版社, 2002: 22-26. HAO ZB. Experimental technology of plant physiology[M]. Harbin: Harbin Publishing House, 2002: 22-26 (in Chinese).
    [20] 俞建瑛, 蒋宇, 王善利. 生物化学实验技术[M]. 北京: 化学工业出版社, 2005. YU JY, JIANG Y, WANG SL. Biochemical experimental technology[M]. Beijing: Chemical Industry Press, 2005 (in Chinese).
    [21] 邢芳芳, 宋涛, 徐文凤, 徐春英, 禚优优, 李新柱, 胡兆平. 侧孢芽孢杆菌在生防中的应用及研究进展[J]. 山东农业科学, 2014, 46(6): 146-149. XING FF, SONG T, XU WF, XU CY, ZHUO YY, LI XZ, HU ZP. Application of Bacillus laterosporus in biological prevention and research advances[J]. Shandong Agricultural Sciences, 2014, 46(6): 146-149 (in Chinese).
    [22] 马新明, 席磊, 熊淑萍, 杨娟. 大田期烟草根系构型参数的动态变化[J]. 应用生态学报, 2006, 17(3): 3373-3376. MA XM, XI L, XIONG SP, YANG J. Dynamic changes of morphological parameters of tobacco root in field[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 3373-3376 (in Chinese).
    [23] 靳辉勇, 黎娟, 朱益, 齐绍武, 梁仲哲, 淡俊豪. 土壤调理剂对烤烟根系活力及根际土壤微生物碳代谢特征的影响[J]. 核农学报, 2019, 33(1): 158-165. JIN HY, LI J, ZHU Y, QI SW, LIANG ZZ, DAN JH. Effect of soil conditioner on root vigor and carbon metabolism characteristics of rhizosphere soil microorganisms in flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 158-165 (in Chinese).
    [24] 王宇辰, 陈孟起, 李耀光, 柳征, 肖先仪, 张晓娟, 喻保华, 景延秋, 李春光. 镧处理对干旱胁迫下烟草根系形态与生理特征的影响[J]. 中国稀土学报, 2018, 36(3): 319-327. WANG YC, CHEN MQ, LI YG, LIU Z, XIAO XY, ZHANG XJ, YU BH, JING YQ, LI CG. Effects of lanthanum on morphological and physiological characteristics of tobacco root under drought stress[J]. Journal of the Chinese Society of Rare Earths, 2018, 36(3): 319-327 (in Chinese).
    [25] 党伟, 李茜, 叶歌斐, 汪海燕, 张玉宁, 杨铁钊, 武兆云, 杨惠娟. 硝酸还原酶基因启动子NRE2元件缺失对烟草氮代谢的影响[J]. 核农学报, 2022, 36(2): 322-328. DANG W, LI X, YE GF, WANG HY, ZHANG YN, YANG TZ, WU ZY, YANG HJ. Effect of NRE2 element deletion of nitrate reductase gene promoter on nitrogen metabolism in tobacco[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 322-328 (in Chinese).
    [26] 张磊, 袁梅, 孙建光, 樊明寿, 高淼, 郑红丽. 马铃薯内生固氮菌的分离及其促生特性研究[J]. 中国土壤与肥料, 2016(6): 139-145. ZHANG L, YUAN M, SUN JG, FAN MS, GAO M, ZHENG HL. Isolation and functional characterizations of potato endogenous nitrogen-fixing bacteria[J]. Soil and Fertilizer Sciences in China, 2016(6): 139-145 (in Chinese).
    [27] 王建武, 相微微, 陈花, 王一昭, 刘畅, 屈香香, 王鹏, 尚爱军. 沙地柏根际促生耐寒短杆菌SDB5的分离和功能鉴定[J]. 西北农业学报, 2022, 31(9): 1202-1210. WANG JW, XIANG WW, CHEN H, WANG YZ, LIU C, QU XX, WANG P, SHANG AJ. Isolation and functional identification of growth-promoting rhizobacteria Brevibacterium frigoritolerans SDB5 from Sabina vulgaris[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(9): 1202-1210 (in Chinese).
    [28] van NORMAN JM, XUAN W, BEECKMAN T, BENFEY PN. To branch or not to branch: the role of pre-patterning in lateral root formation[J]. Development, 2013, 140(21): 4301-4310.
    [29] SMITH S, de SMET I. Root system architecture: insights from Arabidopsis and cereal crops[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441-1452.
    [30] ABREU ME, MUNNÉ-BOSCH S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana[J]. Journal of Experimental Botany, 2009, 60(4): 1261-1271.
    相似文献
    引证文献
引用本文

李英民,殷文闻,柳霞,刘京,黄莺. 短小橘杆菌(Brevibacterium antarcticum) WN5代谢产物对烟苗的促生效应[J]. 微生物学通报, 2024, 51(8): 3032-3040

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-18
  • 最后修改日期:2024-01-05
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码