科微学术

微生物学通报

施肥对马铃薯根组细菌群落多样性与功能的影响
作者:
基金项目:

张家口市应用基础研究和人才培养计划(1911028A)


Effects of fertilization on the bacterial diversity and functions of potato roots
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【背景】施肥是一种常用的农业生产手段,但目前关于施肥对马铃薯根系细菌群落多样性影响和对细菌功能影响的研究依然较少。【目的】以张家口地区马铃薯为研究对象,研究未施肥与常规施肥处理对马铃薯根系细菌组成结构和功能的影响。【方法】本研究利用16S rRNA基因高通量测序技术,对张家口马铃薯施肥与未施肥处理下根系微生物进行分析。【结果】施肥处理影响了马铃薯苗期与块茎形成期的根系细菌相对丰度:在苗期,相较于未施肥组,施肥组显著降低根际浮霉菌门(Planctomycetota)、根表蓝细菌门(Cyanobacteria)和根内厚壁菌门(Firmicutes)的相对丰度,显著提高根表蛭弧菌门(Bdellovibrionota)、装甲菌门(Armatimonadota)、拟杆菌门(Bacteroidota)、髌骨菌门(Patescibacteria)与根内绿弯菌门(Chloroflexi)、Planctomycetota的相对丰度;在块茎形成期,相较于未施肥组,施肥组显著提高根际的酸杆菌门(Acidobacteriota)、Firmicutes、放线菌门(Actinobacteriota)、BacteroidotaPatescibacteria、根表的ArmatimonadotaBacteroidotaBdellovibrionota和根内的Armatimonadota、念珠菌门(Hydrogenedentes)的相对丰度,显著降低根际Cyanobacteria、根表芽单胞菌门(Gemmatimonadota)、Cyanobacteria、黏球菌门(Myxococcota)和根内的硝化螺旋菌门(Nitrospirota)与RCP2-54的相对丰度。同时,施肥处理影响了马铃薯苗期与块茎形成期的基因功能相对丰度:在苗期,相较于未施肥组,施肥组显著提高根表其他次级代谢物的生物合成、糖类生物合成和代谢、复制与修复,以及根内复制与修复的基因功能相对丰度;在块茎形成期,相较于未施肥组,施肥组显著提高根际萜类和聚酮类化合物的代谢和脂质代谢、根内复制与修复,以及根表萜类和聚酮类化合物的代谢和脂质代谢的基因功能相对丰度,显著降低根际能量代谢、辅酶和维生素的代谢及其他氨基酸的代谢,以及根表转录、折叠、分类与降解和能量代谢的基因功能相对丰度。【结论】常规施肥能够改善其根系微生物结构和基因功能相对丰度,即相较于对照组,施肥组中细菌群落丰富度和多样性显著提高,并且有关代谢、能量转化与利用的基因功能相对丰度显著提高,从而有效地提高马铃薯产量。

    Abstract:

    [Background] Fertilization is a common agronomic measure, while there are few studies about the effects of fertilization on the bacterial diversity and functions of potato roots. [Objective] To study the effects of non-fertilization and conventional fertilization on the community composition, structure, and function of bacteria in potato root samples collected from Zhangjiakou. [Methods] The 16S rRNA gene sequencing was employed to analyze the root bacteria of potato under fertilization and non-fertilization treatments. [Results] Fertilization affected the bacterial abundance of potato plants at the seedling stage and tuber formation stage. At the seedling stage, fertilization significantly reduced the abundance of Planctomycota, Cyanobacteria, and Firmicutes in the rhizosphere and significantly increased the abundance of Bdellovibrionota, Armatimonadota, Bacteroidota, and Patescibacteria on the root surface and the abundance of Chloroflexi and Planctomycetota in the roots, compared with non-fertilization treatment. At the tuber formation stage, fertilization significantly increased the abundance of Acidobacteriota, Firmicutes, Actinobacteriota, Bacteroidota, and Patescibacteria in the rhizosphere, Armatimonadota, Bacteroidota, and Bdellovibrionota on the root surface, and Armatimonadota and Hydrogenedentes in the roots. Meanwhile, it significantly decreased the abundance of Cyanobacteria in the rhizosphere, Gemmatimonadota, Cyanobacteria, and Myxococcota on the root surface, and Nitrospirota and RCP2-54 in the roots. In addition, fertilization affected the gene abundance of potato plants at the seedling stage and tuber formation stage. At the seedling stage, compared with non-fertilization treatment, fertilization significantly increased the abundance of genes involved in the biosynthesis of other secondary metabolites, glycan biosynthesis and metabolism, and replication and repair on the root surface and those for replication and repair in the roots. At the tuber formation stage, fertilization significantly increased the abundance of the genes associated with the metabolism of terpenoids and polyketides and lipid metabolism in the rhizosphere, replication and repair in the roots, and the metabolism of terpenoids and polyketides and lipid metabolism on the root surface. Meanwhile, it significantly reduced the abundance of genes involved in the energy metabolism, metabolism of cofactors and vitamins, metabolism of other amino acids in the rhizosphere and those participating in transcription, folding, sorting, degradation, and energy metabolism on the root surface. [Conclusion] Conventional fertilization could improve the root microbial structure and gene function abundance. That is, compared with the control group, fertilization increases the bacterial richness and diversity and the abundance of genes associated with the metabolism and energy conversion and utilization, thereby improving the potato yield.

    参考文献
    [1] Fan Z, LI R, GUAN E, CHEN HQ, ZHAO XN, WEI GH, SHU DT. Fertilization regimes affect crop yields through changes of diazotrophic community and gene abundance in soil aggregation[J]. Science of the Total Environment, 2023, 866: 161359.
    [2] SHAKOOR A, BOSCH-SERRA ÀD, ALBERDI JRO, HERRERO C. Seven years of pig slurry fertilization: impacts on soil chemical properties and the element content of winter barley plants[J]. Environmental Science and Pollution Research, 2022, 29(49): 74655-74668.
    [3] 李明智, 张宇, 梅荣武, 韦彦斐, 王慧荣, 陈潜, 楼继锋, 厉林聪. Biolog ECO分析活性污泥微生物功能多样性特征[J]. 环境科学与技术, 2016, 39(6): 55-58, 100. LI MZ, ZHANG Y, MEI RW, WEI YF, WANG HR, CHEN Q, LOU JF, LI LC. Analysis of microbial community functional diversity of activated sludge by biolog ECO method[J]. Environmental Science & Technology, 2016, 39(6): 55-58, 100 (in Chinese).
    [4] Jing JY, CONG WF, BEZEMER TM. Legacies at work: plant-soil-microbiome interactions underpinning agricultural sustainability[J]. Trends in Plant Science, 2022, 27(8): 781-792.
    [5] Wang C, MA HY, FENG ZH, YAN ZX, SONG BL, WANG JL, ZHENG YY, HAO WP, ZHANG WY, YAO MJ, WANG YS. Integrated organic and inorganic fertilization and reduced irrigation altered prokaryotic microbial community and diversity in different compartments of wheat root zone contributing to improved nitrogen uptake and wheat yield[J]. Science of the Total Environment, 2022, 842: 156952.
    [6] de VRIES FT, GRIFFITHS RI, KNIGHT CG, NICOLITCH O, WILLIAMS A. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488): 270-274.
    [7] LIU YH, CHU G, STIRLING E, ZHANG HQ, CHEN S, XU CM, ZHANG XF, GE TD, WANG DY. Nitrogen fertilization modulates rice seed endophytic microbiomes and grain quality[J]. The Science of the Total Environment, 2023, 857(Pt 2): 159181.
    [8] 阎佩云. 土壤微生物在植物营养促进作用中的改善作用[J]. 吉林农业, 2019(9): 73. YAN PY. Improvement of soil microorganisms in plant nutrition promotion[J]. Jilin Nongye, 2019(9): 73 (in Chinese).
    [9] KANG A, ZHANG N, XUN WB, DONG XY, XIAO M, LIU ZH, XU ZH, FENG HC, ZOU JW, SHEN QR, ZHANG RF. Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide[J]. Plant Physiology, 2022, 188(2): 1129-1140.
    [10] JOHNSON CM, AUAT CHEEIN F. Machinery for potato harvesting: a state-of-the-art review[J]. Frontiers in Plant Science, 2023, 14: 1156734.
    [11] WANG ZJ, LIU H, ZENG FK, YANG YC, XU D, ZHAO YC, LIU XF, KAUR L, LIU G, SINGH J. Potato processing industry in China: current scenario, future trends and global impact[J]. Potato Research, 2023, 66(2): 543-562.
    [12] 张伟. 不同播种方式及种植密度对马铃薯种薯生产的影响[J]. 种子科技, 2020, 38(20): 20-21. ZHANG W. Effects of different sowing methods and planting density on potato seed production[J]. Seed Science & Technology, 2020, 38(20): 20-21 (in Chinese).
    [13] SARKAR D, SANKAR A, DEVIKA OS, SINGH S, SHIKHA PARIHAR M, RAKSHIT A, SAYYED RZ, GAFUR A, ANSARI MJ, DANISH S, FAHAD S, DATTA R. Optimizing nutrient use efficiency, productivity, energetics, and economics of red cabbage following mineral fertilization and biopriming with compatible rhizosphere microbes[J]. Scientific Reports, 2021, 11: 15680.
    [14] SÁNCHEZ-MONTESINOS B, DIÁNEZ F, MORENO-GAVIRA A, GEA FJ, SANTOS M. Plant growth promotion and biocontrol of Pythium ultimum by saline tolerant Trichoderma isolates under salinity stress[J]. International Journal of Environmental Research and Public Health, 2019, 16(11): 2053.
    [15] 熊悯梓, 钞亚鹏, 赵盼, 宋双伟, 石莹莹, 莫乘宝, 仲乃琴. 不同生境马铃薯根际土壤细菌多样性分析[J]. 微生物学报, 2020, 60(11): 2434-2449. XIONG MZ, CHAO YP, ZHAO P, SONG SW, SHI YY, MO CB, ZHONG NQ. Comparison of bacterial diversity in rhizosphere soil of potato in different habitats[J]. Acta Microbiologica Sinica, 2020, 60(11): 2434-2449 (in Chinese).
    [16] WAGG C, SCHLAEPPI K, BANERJEE S, KURAMAE EE, van der HEIJDEN MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10: 4841.
    [17] TANG HM, LI C, SHI LH, XIAO XP, CHENG KK, WEN L, LI WY. Effect of different long-term fertilizer managements on soil nitrogen fixing bacteria community in a double-cropping rice paddy field of Southern China[J]. PLoS One, 2021, 16(9): e0256754.
    [18] 王亚, 冯发运, 葛静, 李勇, 余向阳. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报, 2022, 42(3): 829-842. WANG Y, FENG FY, GE J, LI Y, YU XY. Effects and mechanisms of plant root exudates on soil remediation[J]. Acta Ecologica Sinica, 2022, 42(3): 829-842 (in Chinese).
    [19] 吴希慧, 王蕊, 高长青, 高胜, 杜兰兰, ASIF K, MILON B, 郭胜利. 土地利用驱动的土壤性状变化影响微生物群落结构和功能[J]. 生态学报, 2021, 41(20): 7989-8002. WU XH, WANG R, GAO CQ, GAO S, DU LL, ASIF K, MILON B, GUO SL. Variations of soil properties effect on microbial community structure and functional structure under land uses[J]. Acta Ecologica Sinica, 2021, 41(20): 7989-8002 (in Chinese).
    [20] 毕明丽, 宇万太, 姜子绍, 周桦, 沈善敏. 施肥和土壤管理对土壤微生物生物量碳、氮和群落结构的影响[J]. 生态学报, 2010, 30(1): 32-42. BI ML, YU WT, JIANG ZS, ZHOU H, SHEN SM. Effects of fertilization and soil management on microbial biomass and community[J]. Acta Ecologica Sinica, 2010, 30(1): 32-42 (in Chinese).
    [21] RACZKA NC, PIÑEIRO J, TFAILY MM, CHU RK, LIPTON MS, PASA-TOLIC L, MORRISSEY E, BRZOSTEK E. Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil[J]. Scientific Reports, 2021, 11: 19320.
    [22] 胡月华. 化肥减量与生物有机肥配施对土壤质量变化及马铃薯产量与品质的影响[J]. 江苏农业科学, 2022, 50(19): 204-210. HU YH. Effects of combined application of chemical fertilizer reduction and bio-organic fertilizer on soil quality change and potato yield and quality[J]. Jiangsu Agricultural Sciences, 2022, 50(19): 204-210 (in Chinese).
    [23] DU J, LIU Y, ZHU HH. Genome-based analyses of the genus Acidovorax: proposal of the two novel genera Paracidovorax Gen. nov., Paenacidovorax Gen. nov. and the reclassification of Acidovorax antarcticus as Comamonas antarctica comb. nov. and emended description of the genus Acidovorax[J]. Archives of Microbiology, 2023, 205(1): 42.
    [24] ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, Da ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUÉ D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480.
    [25] BOSS BL, WANEES AE, ZASLOW SJ, NORMILE TG, IZQUIERDO JA. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata[J]. BMC Genomics, 2022, 23(1): 1-14.
    [26] LEE SM, KONG HG, SONG GC, RYU CM. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease[J]. The ISME Journal, 2021, 15(1): 330-347.
    [27] GLICK BR. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401.
    [28] REN N, WANG Y, YE YL, ZHAO YN, HUANG YF, FU W, CHU X. Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria[J]. Frontiers in Microbiology, 2020, 11: 1948.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

冯艺博,康超群,李瑞霞,霍艳丽,王晓岑,张家浩,李慕贞,张辉,马洁华. 施肥对马铃薯根组细菌群落多样性与功能的影响[J]. 微生物学通报, 2024, 51(8): 3004-3019

复制
分享
文章指标
  • 点击次数:105
  • 下载次数: 278
  • HTML阅读次数: 235
  • 引用次数: 0
历史
  • 收稿日期:2023-10-27
  • 最后修改日期:2023-11-22
  • 在线发布日期: 2024-08-20
  • 出版日期: 2024-08-20
文章二维码